Feeds:
Posts
Comments

Archive for the ‘Benzene’ Category

Poisoned Spring: The Secret History of Pollution and the EPA by E.G. Vallianatos (Important Excerpts)

“Eliminating the public’s ability to halt the selling or planting of these seeds, the groups said, was removing the one sure way of checking this hugely profitable but potentially dangerous forced march toward the genetic engineering of our food.

We knew this was Bush’s view, of course: State Department cables reveal that the Bush administration threatened the European Union with sanctions unless EU governments allowed the planting of Monsanto’s genetically modified seeds in Europe. But the phalanx of Monsanto men and women working for Obama simply confirms that it does not matter who presides over the White House or Congress. Corporations rule the kingdom. While still serving as Obama’s solicitor general, Elena Kagan wrote a brief requesting the Supreme Court to lift a ruling by an appeals court forbidding the planting in California of Monsanto’s genetically engineered Roundup Ready alfalfa. In August 2010, Kagan was confirmed as a Supreme Court justice. She sits beside Justice Clarence Thomas, who once served as a lawyer for Monsanto.
Indeed, when it comes to genetic engineering, “the Obama administration has not been better than the Bush administration, possibly worse,” wrote Jeffrey Smith, an expert on the health effects of bioengineered food. The triumph of Monsanto within the government is bad for our health and bad for the environment. Let me explain further by introducing Don Huber….

Don Huber knows a lot about biological weapons, and he knows a lot about plants. A retired colonel from the Army’s biological warfare corps, Huber taught plant diseases and soil microbiology at Purdue University for thirty-five years. He has also been the coordinator of the U.S. Agricultural Research Service National Plant Disease Recovery System, a program of the USDA. Of all the things he knows about biological weapons and crops, he is most concerned about the destructive effects of pesticides on the biological systems of plants….

On January 17, 2011, Huber wrote a letter to Secretary of Agriculture Thomas Vilsack, “For the past 40 years, I have been a scientist in the professional and military agencies that evaluate and prepare for natural and manmade biological threats, including germ warfare and disease outbreaks,” Huber wrote, “Based on this experience, I believe the threat we are facing from this pathogen is unique and of high risk status. In laymen’s terms, it should be treated as an emergency.

Huber explained that the pathogen is “a medium size virus” and “a micro-fungal-like organism” that can reproduce itself. It has been found in livestock feed made by soybeans and corn genetically engineered to withstand glyphosate (“Roundup soybean meal and corn”).  In addition, the pathogen has been found in pigs, cattle, and other animals that have been struck by spontaneous abortions and infertility. The pathogen “may explain the escalating frequency of infertility and spontaneous abortions over the past few years in US cattle, dairy, swine, and horse operations,” Huber added. “These include recent reports of infertility rates in dairy heifers of over 20%, and spontaneous abortions in cattle as high as 45%.”

It is well-documented that glyphosate promotes soil pathogens and is already implicated with the increase of more than 40 plant diseases,” Huber continued. Furthermore, glyphosate “dismantles plant defenses” against disease by immobilizing vital nutrients, which means the growing crop is starved of the nutrients it must have to defend itself against disease and to be nutritious. Such impoverished crops, says Huber, are causing “animal disorders.”

Someone leaked the letter Huber sent to Secretary Vilsack. Huber then sent his original letter to the European Union and the European Commission with a cover letter, dated April 20, 2011, explaining why he had felt compelled to write so urgently to the U.S. Secretary of Agriculture.

“I feel it would be totally irresponsible to ignore my own research and the vast amount of published research now available that support the concerns we are seeing in production agriculture,” Huber wrote. He cited evidence showing this new pathogen kills chicken embryos in 24 to 72 hours. The pathogen also intensifies many of the diseases afflicting crops, including an affliction known as Goss’s wilt that in 2010 caused American farmers to lose fully a billion bushels of corn…

Huber’s hopes were quickly dashed. Two weeks after he sent his letter to Vilsack, he received a letter back from the USDA: the government was determined to side with Monsanto on alfalfa. The letter assured Huber that the decision was based “on sound science informed by peer-review research….” – Portions from pages 204 – 207

“Huber responded to the USDA with a long and impassioned letter citing 135 scientific studies supporting his position. He was furious at the intimidation of scientists working on the risks of bioengineered crops, especially on the links between glyphosate and now-unregulated alfalfa.

“The current crop and animal production environment is NOT normal and NOT sustainable!” Huber wrote. “We are experiencing an escalating incidence of crop, animal, and human diseases, the emergence and reemergence of diseases once rare or under practical control, and new diseases previously unknown to science.”

Increasing incidences of disease in animal production programs, especially cattle, dairy, and swine, had become associated with low manganese or other micronutrients, Huber wrote. Manganese deficiencies are associated with infectious diseases, bone and tissue deformities, reproductive failure and death. Discovered just a decade previously, this new “electron-microscope-sized ‘organism’” was causing infertility and miscarriage in animals. “The excessive use of glyphosate is a major contributor to the increased severity and epidemics of plant and animal diseases, reduced nutrient quality, high mycotoxin levels, and toxic chemical residues we are experiencing in production agriculture,” Huber wrote. “I urge your consideration of the decision to deregulate Roundup Ready Alfalfa based on the principle of ‘Scientific Precaution’ until research can be completed relative to its safety, equivalency, and sustainability.”

Huber must have known that asking the USDA to undo the deregulation of alfalfa was hopeless. The Monsanto-controlled agency would not tolerate scientific resistance. So, on November 1, 2011, Huber left for England, where he made a presentation to the All-Party Parliamentary Group on Agroecology of the British House of Commons, in which he repeated his conclusions he had reported to the USDA, the European Union, and the European Commission.

Now outside the suffocating atmosphere of USDA Huber expressed himself in less diplomatic language. Glyphosate “predisposes plants to disease” and stimulates pathogens” in the soil, he said. Glyphosate compromises the defense of crops against disease and kills the targeted plants by acting as a biological war agent—in a sense, by boosting disease organisms in the soil while killing disease resistance organisms….

Like Morton Biskind sixty years earlier, Don Huber spoke of “a new factor” in our civilization causing havoc in nature, human health, and global food security. The new factor for Biskind in 1953 was the “miracle” of DDT; for Huber in 2011, the danger was posed by a pathogen associated with another “miracle” chemical named glyphosate. In both cases, we have the sick feeling that little, if anything, has changed. The same irresponsible agribusiness policies reign, threatening the very integrity of our food and our health….

Huber, now an emeritus professor at Purdue, wrote to me in August 2012 to say that all his efforts with the USDA had “fallen on deaf ears.” The USDA was busy deregulating genetically modified crops, and scientists working at universities with industry contracts were in hot water: “Several scientists have been limited in what they can say or share, while others have been denied promotion or tenure,” Huber wrote. Thankfully, he said, his own research was still privately funded,” since we couldn’t take a chance on it being shut down earlier.”

Huber’s dire warning is like a sword hanging by a thread. The USDA “regulators” of genetically engineered crops continue with business as usual. In early 2012, they were ready to approve the dangerous herbicide 2.4-D (which, you will remember, was half of Agent Orange) for a new genetically modified corn. This action is certain to double the adverse effects of genetically modified crops. 2,4-D may even trump glyphosate as the greatest chemical threat to American agriculture. Its history of more than seventy years as a chemical weapon, and as a weed killer contaminated by the lethal 2378-dioxin, doesn’t bode well for America…. Dow has convinced the “regulators” of America, Canada, and the European Union that 2,4-D is safe…” – Portions from pages 208 –  212

“According to the EPA, 25% of samples of 2,4-D were contaminated with dioxin (2,3,7,8-TCDD), which is mutagenic, carcinogenic, and causes reproductive problems at very small doses.” (CDC NIOSH, 2005).

“Charles Benbrook, a former Capitol Hill staff scientist, has shown that, in the period between 1996 and 2011, the GM crops in the United States increased the use of pesticides by about 7 percent, or 404 million pounds a year.” – page 213

“In Wyoming, a small farmer named John Fenton has twenty-four gas wells on his farm, and his drinking water is full of poisons, including drilling fluids, driving muds, and high levels of the cancer causing benzene. Since the contamination, Fenton’s property has lost half of its value; he has to buy drinking water, though he still bathes in the contaminated water. Around his community, he has seen people with “a lot of neurological problems, neuropathy, seizures, people losing their sense of smell, sense of taste. People with their arms and legs going numb.”

Local officials, meanwhile, continue to tell Fenton his water is potable. When Fenton persuaded the EPA to test his water and investigate the fracking of gas wells under his land, the agency agreed with him: fracking had poisoned his water.

The political response to this evidence was predictable. House Republicans held a public meeting on the Fenton water testing case, but when the “public” actually showed up—in the form of Josh Fox, the producer of Garland, a documentary on the devastation caused by natural gas drilling—the elected officials had Fox arrested.

In May 2012, the Obama administration proposed regulations requiring drillers to reveal the composition of their fracking chemicals thirty days before they blasted underground deposits of oil and gas with those chemicals. Once again, industry pressure diluted the effort, and the lobbyists for ExxonMobil and other drillers convinced the White House to reverse the regulation. The drillers would name their fracking chemicals only after they completed their work.

Once again, we find ourselves asking fundamental questions: What does such a policy say about our country’s priorities? Who are such laws meant to protect? As with pesticides, so with fracking: America needs to reinvent itself, to reverse the pervasive and insidious influence of the petrochemical-agribusiness complex” – Portion from pages 227 – 228

“But with the testing of the various toxic compounds released into the human economy and environment, we now also know that pesticides “injure man’s genetic material in precisely the same way radiation does,” my EPA colleague John Hou-Shi Chen, a distinguished geneticist, told me more than thirty years ago. “And what is so awful about such genetic injury is that it is permanent—it can’t be recalled, corrected or somehow restricted to the victim, unless you also castrate the individual. So now with a greater number of pesticide poisons loose in the environment, we as a society are creating a generation of people who will be weak in facing the future. We are then changing, irreversibly, the future itself. The price for that change is—or should be—unacceptable to any people with dignity and respect for themselves and love for their children.”

I agree with this wisdom wholeheartedly. For decades, the EPA was my personal university, where I learned the hard way why America and the rest of the industrialized world have become so hooked on dangerous farm sprays. No science or policy has been allowed to interrupt this corruption. In fact, science and policy themselves have been made a prop to the pesticides industry and agribusiness.

This is a tragic turn of events, especially given the evidence. Tomes of scientific studies have shown farm sprays for what they are: biocides, which cause and promote insect infestations of crops; give cancer to animals and humans; and leave a trail of death among fish and wildlife.

Just as petroleum companies pay for fake “science” that muddles the debate about climate change, most studies funded by the chemical industry muddy the debate about pesticides. Meanwhile, the U.S. Department of Agriculture and the EPA continue to take up the cause of agribusiness, with catastrophic consequences for family farmers, who have been almost completely swallowed up (or driven into bankruptcy) by industrial-scale farms. In the twentieth century, 98 percent of black farmers and more than 60 percent of white family farmers were forced off the land. The few large farmers and agribusinesses left in charge of rural America are hooked on pesticides precisely because these enable them to control their vast estates.”  – Page 230

“EPA officials know global chemical and agribusiness industries are manufacturing science. They know their products are dangerous. Yet industry power either corrupts or silences EPA scientists, who are forced then to bury or ignore the truth. Scientists find themselves working in a roomful of funhouse mirrors, plagiarizing industry studies and cutting and pasting the findings of industry studies as their own.

These are the behaviors of a traumatized organization. And these are the reasons why, fifty-two years after Silent Spring, farm sprays remain ubiquitous, their makers remain more powerful than ever, and we remain overwhelmed with diseases and imbalances in nature.

President Barack Obama—indeed, any president—needs to take human health and family farming much more seriously. He needs to discard the toxic policies of agribusiness in favor of small-scale agriculture that raises healthful food without injuring humans and wildlife or contributing to climate change. Traditional (and often organic) farmers—until seventy-five years ago, the only farmers there were—are slowly beginning to make a comeback. They have always known how to raise crops and livestock without industrial poisons. They are the seed for a future of good food, a healthy natural world, and democracy in rural America—and the world.”  – Portions from pages 235 – 236

 

 

Read Full Post »

Chemical weapons to cures.

“Chasing Molecules” explains the connection between chemotherapy pharmaceuticals and photographic chemicals. “I’ve synthesized over a hundred molecules that never existed before,” Warner tells me. By the time he finished graduate school at Princeton in 1988, with a PhD in organic chemistry, Warner had published seventeen scientific papers–many on compounds related to pharmaceuticals, particularly anticancer drugs–a volume of research publication he immodestly but matter-of-factly says is “perhaps unprecedented.”

One day Warner got a call from Polaroid offering him a job in their exploratory research division. So he went to work synthesizing new materials for the company, inventing compounds for photographic and film processes. Describing his industrial chemistry work in an article for the Royal Chemistry Society, Warner wrote: “I synthesized more and more new compounds. I put methyl groups and ethyl groups in places where they had never been. This was my pathway to success.”7 There was even a series of compounds he invented that, in his honor, became known as “Warner complexes.”

Warner had married in graduate school and while working at Polaroid had three children. His youngest and second son, John–born in 1991–was born with a serious birth defect. It was a liver disease, Warner tells me, caused by the absence of a working billiary system (which creates the secretions necessary for digestion). Despite intensive medical care, surgery, and a liver transplant, John died in 1993 at age two. “You can’t imagine what it was like,” says Warner. “Laying awake at night, I started wondering if there was something I worked with, some chemical that could possibly have caused this birth defect,” Warner recalls. He knows it’s unlikely that this was the case, but contemplating this possibility made him acutely aware of how little attention he and his colleagues devoted to the toxicity or ecological impacts of the materials they were creating.

“I never had a class in toxicology or environmental hazards,” Warner tells me and shows me a slide from a lecture he gives that reads from top to bottom in increasingly large type: “I have synthesized over 2,500 compounds! I have never been taught what makes a chemical toxic! I have no idea what makes a chemical an environmental hazard! I have synthesized over 2,500 compounds! I have no idea what makes a chemical toxic! We’ve been monkeys typing Shakespeare,” he adds.

“The chemical synthesis toolbox is really full, and 90 percent of what’s in that toolbox is really nasty stuff.” It’s a coincidence and reality of history, Warner tells me, but the petroleum industry has been the primary creator of materials for our society. “Most of our materials’ feedstock is petroleum. As petroleum is running out, things will have to change. (That is why the “Merchants of Death” are getting more desperate. ” – Chasing Molecules (page xxii)

The chart below is from The Devils Chemists: 24 Conspirators of the International Farben Cartel Who Manufacture Wars by Nuremberg prosecutor, Josiah E. DuBois, Jr. (Examine the boxes and how they feed into one another. The Legal and Patents Depts. box was the law firm of Sullivan and Cromwell. Allen Dulles and John Foster Dulles were partners at Sullivan and Cromwell. They created the CIA to protect their corporate cartel clients)

IG Farben chart

“As petroleum is running out, things will have to change.” – John Warner (Businesses are changing and trying to find that high grade sulfur rich petroleum needed for production is getting more and more challenging. See article titles below)

General Electric to Sell Plastics Division By Claudia H. Deutsch – 2007… In January, when G.E. confirmed long-standing rumors that it was putting its plastics business on the block, most analysts expected the unit to go for $8 billion to $10 billion, and for the probable buyer to be a private equity firm.

But in recent months, G.E. executives had signaled to analysts that they expected to get $10 billion to $12 billion for the unit, and that it would likely go to a strategic buyer — that is, a company that would utilize the division and its products, rather than groom it for an eventual public offering or resale. Most analysts quickly honed in on Sabic, because of its access to Saudi Arabia’s vast petroleum supplies. After all, it was the ever-rising cost of benzene, a petroleum derivative and a key raw material for G.E.’s plastics products, that had sucked the profitability out of the unit for G.E. A company like Sabic, with an inexpensive and inexhaustible supply of benzene could far more easily turn a profit.”

Dow Chemical Closing 3 Plants In Louisiana By Ernest Scheyder, AP Energy Writer Manufacturing.Net – July 01, 2009

Dow Chemical, Saudi Aramco Agree to Factories in Saudi Arabia by Jack Kaskey

Saudi Arabia Stealing 65% of Yemen’s Oil in Collaboration with Total

Netanyahu: Israel prepares to annex most of Syria to secure the jewish future” (That should say Israel’s chemical weapons, pharmaceutical, industrial agricultural, and rubber and polymers industrial future and not “Jewish” future.) http://www.awdnews.com/…/netanyahu-israel-prepares-to-annex…

From Chemical Weapons to “Cures.”

One of the first effective chemotherapy agents, not surprisingly, was valued not for its curative properties but for its efficacy as a killer chemical. We know this chemical today as a notorious agent of war—mustard gas. Deployed by the German Empire during the First World War on the battlefields of Europe, most infamously in Ypres, Belgium, mustard gas—a relatively simple combination of sulfur, carbon, and chlorine—killed hundreds of thousands of French and colonial troops. Over a million others were sickened or maimed for life.* (Side note – this figure is wrong. There were 15,000 and of those 1/4 were killed that’s according to Joseph Borkin, a Treasury investigator who wrote a book about IG Farben and his figures are aligned with others) Once it made its way into the body, the chemical also affected tissues with larger proportions of dividing cells. Wartime autopsies found the lymph nodes, spleens, and bone marrow of victims depleted of white cells…. Mustard gas may have been “gone” from the battlefield, but it was by no means forgotten—which ostensibly explains why, in 1943, the American Liberty ship John Harvey was carrying a load of mustard gas bombs. The bombs were intended for retaliation, just in case the Germans reneged on the treaty. Docked in the old port city of Bari, Italy, the cargo likely would have slipped through the war and evaded the history books had the Germans not raided the port. On December 2, as German planned bombarded Bari, sinking 28 cargo ships including the John Harvey, nearly 100,000 pounds of mustard gas spilled across the harbor and rose into the night sky. Thousands of soldiers and citizens were exposed. Hundreds were hospitalized with chemical burns and blindness. At least 83 died. The cause was a mystery to all but a few “in the know.” Upon autopsy, it was found that the victims’ white-blood-cell counts were oddly depleted.
By the time of the Bari incident, leukemia was fairly well characterized as a cancer of the white blood cells. And secretive studies into the effects of mustard-gas-derived chemicals on white blood cells were beginning to bear fruit. Experiments by pioneering pharmacologists Alfred Gilman and Louis Goodman revealed astonishing efficacy of one mustard-like chemical that targeted white blood cells in laboratory mice afflicted with lymphoma. Typically, laboratory mice with lymphoma lived about 21 days. The first mouse treated with the mustard agent lived a remarkable 84 days. After two doses its tumor regressed. The chemical agent seemed to target cancerous white blood cells. What Goodman and Gilman couldn’t have known then was how the mustard derivative worked—why it seemed to target white cells and not most others. Years later, studies revealed that the chemical slips into the DNA molecule, rendering it incapable of normal replication. Ultimately, the hobbled cells die. Since it targets cells in the process of replicating—those that reproduce most often, including cancerous white blood cells, are preferentially killed. Unfortunately, the chemical’s efficacy was fleeting. Cancer cells, observed Gilman, were remarkably resilient. When dosing stopped, the cancer bounced back. Worse, it became increasingly tolerant to drug exposure. Yet, even though cancer control was short-lived, the ability to melt away a tumor through chemical treatment was unprecedented. In 1942, the first human subject suffering from as advanced leukemia was injected with nitrogen mustard. The response, writes Gilman, “was as dramatic as that of the first mouse.” Exposure to the mustard-gas derivative had chased the cancer into remission within days. However, as with the mice, disease respite was temporary…. Still, chemotherapy derived from mustard gas and other chemicals granted cancer patients a reprieve from death: a few weeks, months, or years—sometimes long enough for the next drug.” – Unnatural Selection: How We Are Changing Life, Gene by Gene by Emily Monsoon (portions from pages 62 – 64.)

“For twenty-one years, while the Kochs were financing an ideological war aimed at freeing American business from the grip of government, Donald Carlson was cleaning up the dregs their industry left behind. Stitched to the jacket he wore to work at Koch Refining Company, the booming Pine Bend Refinery in Rosemount, Minnesota, was the name Bull. His colleagues called him this because of his brawn and his willingness to shoulder the tasks no one else wanted to touch…
Its profitability had proven the Koch’s purchase of Pine Bend prophetic. It had become the largest refinery north of Louisiana with the capacity to process 330,000 barrels of crude a day, a quarter of what Canada exported to the United States. It provided over half of the gas used in Minnesota and 40 percent of that used by Wisconsin. Carlson’s job was demanding but he enjoyed it. He cleaned out huge tanks that contained leaded gasoline, scraping them down by hand. He took samples from storage tanks whose vapors escaped with such force they sometimes blew his helmet off. He hoisted heavy loads and vacuumed up fuel spills deep enough to cause burns to his legs. Like many of the thousand employees at the refinery, Carlson was often exposed to toxic substances. “He was practically swimming in those tanks,” his wife recalled. But Carlson never thought twice about the hazards. “I was a young guy,” he explained later. “They didn’t tell me anything, I didn’t know anything.”
In particular, Carlson said, no one warned him about benzene, a colorless liquid chemical compound refined from crude oil. In 1928, two Italian doctors first detected a connection between it and cancer. Afterward, numerous scientific studies linked chronic benzene exposure to greatly increased risks of leukemia. Four federal agencies—the National Institute of Health (NIH), the Food and Drug Administration, the Environmental Protection Agency, and the Center for Disease Control—have all declared benzene a human carcinogen. Asked under oath if he’d been warned about the harm it posed to his hemoglobin, Carlson replied, “I didn’t even know what hemoglobin was.”
In 1995, Carlson was too sick to work any longer at the refinery. When he obtained his company medical records, he and his wife were shocked by what they read. In the late 1970’s, OSHA had issued regulations requiring companies whose workers were exposed to benzene to offer annual blood tests, and to retest, and notify workers if any abnormalities were found. Companies were also required to refer employees with abnormal results to medical specialists. Koch Refining Company had offered the annual blood tests as legally required, and Carlson had dutifully taken advantage of the regular screening. But what he discovered was that even though his tests had shown increasingly serious, abnormal blood cell counts beginning in 1990, as well as in 1992 and 1993, the company had not mentioned it to him until 1994.
Charles Koch had disparaged government regulations as “socialistic.” From his standpoint, the regulatory state that had grown out of the Progressive Era was an illegitimate encroachment on free enterprise and a roadblock to initiative and profitability. But while such theories might appeal to the company’s owners, the reality was quite different for many of their tens of thousands of employees.
Carlson continued working for another year but grew weaker, needing transfusions of three to five pints of blood a week. Finally, in the summer of 1995, he grew too sick to work at all. At that point, his wife recalls, “they let him go. Six-months’ pay was what they gave him. It was basically his accumulated sick pay.” Carlson argued that his illness was job related, but Koch Refining denied his claim, refusing to pay him workers’ compensation, which would have covered his medical bills and continued dependency benefits for his wife and their teenage daughter. “The doctor couldn’t believe he was never put on workmen’s comp,” she added. “We were just naive. We didn’t think people would let you die. We thought, ‘They help you, don’t they?’
In February 1997, twenty-three years after he joined Koch Industries, Donald Carlson died of leukemia. He was fifty-three. He and his wife had been married thirty-one years. “Almost the worst part,” she said, was that “he died thinking he’d let us down financially.” She added, “My husband was the sort of man who truly believed that if you worked hard and did a good job, you would be rewarded.” – Dark Money: The Hidden History of the Billionaires Behind the Rise of The Radical Right by Jane Mayer (portions from pages 120 – 122.)

Prevention has never been a priority because those who profit from causing cancer and disease also profit from treating it.  Pesticides, chemical weapons, and chemotherapy… oh my! The “Merchants of Death” corporate cartel make a killing from all their wars on nations, insects, weeds, microbes, fungi, terror, and even cancer. Profits all around as they destroy our world and our bodies.

“Dr. Schrader had been working at an insecticide lab for IG Farben in Leverkusen, north of Cologne, for several years. By the fall of 1936, he had an important job on his hands. Weevils and leaf lice were destroying grain across Germany, and Schrader was tasked with creating a synthetic pesticide that could eradicate these tiny pests. The government had been spending thirty million reichsmarks a year on pesticides made by Farben as well as other companies. IG Farben wanted to develop an insect killer that could save money for the Reich and earn the company a monopoly on pesticides…. Dr. Schrader sent a sample of this lethal new fumigant to Farben’s director of industrial hygiene, a man named Professor Eberhard Gross (not to be confused with Dr Karl Gross, the Waffen-SS bacteriologist connected with the Geraberg discovery). Gross tested the substance on an ape in inside the inhalation chamber. He watched this healthy ape die in sixteen minutes. Professor Gross told Dr. Schrader that his Preparation 9/91 was being sent to Berlin and that he should wait for further instruction on what action to take next.

At Dustin, Schrader told Major Tilley that when he learned his compound could kill a healthy ape through airborne contact in minutes, he became upset. His discovery was never going to be used as an insecticide, Schrader lamented. It was simply too dangerous for any warm-blooded animal or human to come into contact with. Schrader said his goal was to save money for the Reich….

“Everyone was astounded, ” Schrader told Tilley. This was the most promising chemical killer since the Germans invented mustard gas. Preparation 9/91 was classified as top secret and given a code name: tabun gas. It came from the English word “taboo,” something prohibited or forbidden… At the Dustbin interrogation center, Major Tilley asked Schrader about full-scale production. Based on the Allies’ discovery of thousands of tons of tabun bombs in the forests outside Raubkammer, Farben must have had an enormous secret production facility somewhere. Dr. Schrader said that he was not involved in full-scale production. That was the job of his colleague, Dr. Otto Ambros…. From Krauch, Major Tilley learned quite a bit more about Ambros. That he had been in charge of technical development of chemical weapons production at Gendorf and at Dyhernfurth. That Gendorf produced mustard gas on the industrial scale, and that Dyhernfurth produced tabun. Krauch also revealed a new piece of evidence. Dyhernfurth produced a second nerve agent, one that was even more potent than tabun, called sarin. Sarin was an acronym pieced together from the names of four key persons involved in its development:  Schrader and Ambros from IG Farben and from the German Army, two officers named Rudiger and Linde.” – Operation Paperclip: The Secret Intelligence Program That Brought Nazi Scientists to America by Annie Jacobson

pages 146 -149

The holocaust never ended, it evolved.

Germany’s Master Plan continues.

“Oil is the blood of mechanized armies–the richest prize of battle. No sacrifice in lives or money has been judged too great to pay for its possession….

In 1929 what has been described by both Standard and I.G. as a “full marriage” was consummated. This marriage was witnessed by four documents dated November 9, 1929: (I) the Division of Fields Agreement, (2) the Four-Party Agreement, (3) the Coordination Agreement, and (4) the German Sales Agreement.* The parties to these nuptials dowered each other with exclusive monopolies in their respective holdings, vowing “loyal adherence” to each other’s welfare for such a time as the marriage should endure. In more concrete terms, the effects of this marriage may be summarized as follows: First, under the Division of Fields Agreement, Standard and I.G. agreed to eliminate all competition between themselves. This was done by recognizing the position of Standard in the oil industry and the position of I.G. in the chemical industry. Standard receive carte blanche in the oil industry of the world with the exception of the domestic German market. I.G., in turn, was assured a free hand in the entire chemical industry of the world, including the United States, a differential which was to embarrass Standard at a later date.

To grasp the magnitude not only of the Standard I.G. cartel but, in particular, the potency and proportions of I.G.’s grip on technology, we must understand the nature of hydrocarbons. Hydrocarbons, compounds containing hydrogen and carbon, are the basis not only of petroleum products and of hydrogenated coal products, but are the fundamental constituents of a whole range of organic substances. A variety of techniques, such as hydrogenation, hydro-forming, hydrocarbon synthesis, polymerization, alkylation, and catalytic cracking, may be applied to carbonaceous matter. From the solid, the liquid, or the gaseous states of primitive materials, coal and oil, it is possible a myriad of petroleum and chemical products.

Thus, whatever is made in either industry, chemical or petroleum, can in large part be created from the raw materials of the other. Moreover, the vast array of synthetics which can be formed by these processes includes those specialized commodities which spell the difference between a vigorous industrial system and an unbalanced second-rate economy. Judged by military potential or by modern peacetime production, no nation which does not have some source of hydrocarbons and the facilities and knowledge necessary to their transformation can be strong.

Coal, oil and air are the triangular arch of the modern chemists’ war. The advances in chemical science have given hydrocarbons the quality and status of the magic philosopher’s stone which can make a poor nation rich. The list of war material which can be brought forth from coal, oil, air and wood reads like the order book of any army’s ordnance command: toll, tetracene, T.N.T., high octane aviation gas, plastics, synthetic rubber, dyestuffs, explosives, medicines, artificial silk, optical lenses, poison gas, food (the high vitamin content oleomargarine fed to German troops comes from this source), paraffin, clothing—what cannot be drawn from this cornucopia of slime and soot? *(Birth control pills, growth hormones, flame retardants, chemotherapy pharmaceuticals, preservatives, pesticides, herbicides, and synthetic nitrates also come from that slime and soot, by the way, since there are not mentioned and should be)

The patents of I.G. and Standard were pooled so that Standard received not only the benefits of its own research in oil technology, but also received the benefit of any discoveries made by I.G. Moreover, it was intended that this patent consolidation would so fortify Standard that all other oil refiners would be reduced to a subordinate position, thus rendering them susceptible and indeed suppliant to the formation of a gigantic patent pool covering the entire oil industry.

The second agreement in this contractual marriage is the Four-Party Agreement, formed for the purpose of executing the Division of Fields Agreement. It was agreed that I.G. would transfer to a joint corporation, Standard-I.G. Corporation (S-I.G.), any rights upon patents affecting the oil industry. Standard in turn would transfer to this offspring its present and future rights under the hydrogenation process.

With regard to the exchange of experience between Standard and I.G., it was states that:
… The parties agree to work together on the technical development of the hydrocarbon field, to communicate to each other during the life and within the scope of this agreement all technical knowledge and experience, past, present, and future, patented and unpatented, of which the parties are now possessed or which hereafter be possessed in the sense of having the power to disposed of them, and also to help each other in their efforts to obtain adequate patent protection.

The merger of petroleum and chemical technology thus brought about could be held in check, “regulated” in business terms, only by a condominium of such size as the Standard-I.G. combine. Within the hydrocarbon and allied fields, the Standard-I.G. agreements must be considered as the radical hub from which other ancillary accords sweep out to all sectors of the oil and chemical industries.

The architecture of Standard’s relationships with I.G. is constructed on foundations which, when uncovered, advertise the true purposes of the edifice and explain its use. Once past the facade of “cooperation,” the structure is seen to be a fortress to withstand any assault by the forces of competition on the territory of Standard or I.G., and a salient base from which both might conduct sorties into adjunct industries.

This stronghold was built, to adapt a phrase used by Standard, by “piling patent upon patent,” and the analogy is therefore not too remote. In the judgement of the Senate Committee investigating the National Defense Program, “to obtain such a patent structure Standard paid a heavy price which, as in the case of other companies creating such patent structures, had to be borne by the entire nation.”

The Standard-I.G. cartel was in its scope and implications larger, more powerful, and in some respects, at least, of greater significance, than any other economic “junto” with which we have dealt or shall deal. But the characteristics of I.G.’s marriage with Standard are so similar to its agreements with other American and European industrial interests that no doubts can be entertained of I.G.’s purposes.” – Germany’s Master Plan: The Story of Industrial Offensive by Joseph Borkin and Charles A Welsh – 1943

(Portions from pages 177 – 185.)

Read Full Post »

The Dark Side of the Perfectly Manicured American Lawn: Is It Giving You Cancer?  By McKay Jenkins from the book Contamination 

On a beautiful April day, I decided to meet outside with my students at the University of Delaware, where I teach journalism. We sat on the central lawn between two buildings that just happened to bear the names of two gargantuan chemical companies: DuPont and Gore. In the middle of a conversation about agricultural pesticides, a groundskeeper, dressed from feet to neck in a white chemical suit, drove by us on a mower. He wasn’t cutting the grass, though; he was spraying it. And not from one nozzle, but from half a dozen. Up and back he went, describing parallel lines as neat as those in any Iowa farmer’s cornfield. Not a blade escaped the spray. This became a perfect teaching moment.

“Who’s going to ask him what he’s spraying?” I asked my students. One young woman marched over to the groundskeeper. He turned off his engine, they spoke, and she returned.

“He said he’s spraying 2,4-D,” she said. “He said we didn’t need to worry, because he sprayed where we’re sitting at five this morning.”

Which would mean about seven hours earlier. My students chuckled uneasily. He was wearing a full-body chem suit, and they were sitting on the grass in shorts and bare feet?

They’d never heard of 2,4-D, or 2,4-dichlorophenoxyacetic acid. But they had heard of Agent Orange, the notorious defoliant used in Vietnam, and 2,4-D, one of the most extensively used herbicides in the world, is a constituent of Agent Orange (it did not cause the bulk of the devastating effects associated with Agent Orange). It was developed during World War II, mostly as a weapon to destroy an enemy’s rice crops. Despite its history, 2,4-D has long been seen as safe for consumer use.

In the 1940s, botanist E. J. Kraus of the University of Chicago fed five and a half grams of pure 2,4-D to a cow every day for three months. The cow was fine, according to Kraus, as was her calf. Kraus said he himself had eaten half a gram of the stuff every day for three weeks and felt great. This was apparently good enough for the rest of the country; within five years, American companies were annually producing 14 million pounds of the stuff. By 1964, the number had jumped to 53 million pounds.

Today, annual sales of 2,4-D have surpassed $300 million worldwide, and it’s found in “weed and feed” products, like Scotts Green Sweep, Ortho Weed B Gon, Salvo, Weedone, and Spectracide. At first, its impact on humans seems mild—skin and eye irritation, nausea, vomiting, dizziness, stiffness in the arms and legs—and many lawn-care companies have dismissed health concerns. Plus, the businesses add that the amount of chemicals in sprays is very diluted.

With 80 million home lawns and over 16,000 golf courses, you get close to 50 million acres of cultivated turf in America.

But the effects are more worrisome when considered over time. Because 2,4-D is designed to mimic a plant’s natural growth hormone, it causes such rapid cell growth that the stems of treated plants tend to become grotesquely twisted and their roots swollen; the leaves turn yellow and die; and the plants starve to death (2,4-D does not have this effect on grass).

Unsurprisingly, 2,4-D also appears to affect human hormones. The National Institute of Health Sciences lists it as a suspected endocrine disrupter, and several studies point to its possible contribution to reproductive-health problems and genetic mutations. Although the EPA says there isn’t enough evidence to classify 2,4-D as a carcinogen, a growing body of research has begun to link it to a variety of cancers.

A 1986 National Cancer Institute (NCI) study found that farmers exposed to 2,4-D for 20 or more days a year had a sixfold higher risk of developing non-Hodgkin’s lymphoma. Another NCI study showed that dogs were twice as likely to contract lymphoma if their owners used 2,4-D on their lawns.

Like flame retardants, this compound also tends to accumulate inside people’s homes even days after the lawn has been sprayed. One study found 2,4-D in the indoor dust of 63 percent of sampled homes; another showed that levels of the chemical in indoor air and on indoor surfaces increased after lawn applications. After 2,4-D was sprayed, exposure levels for children were ten times higher than before the lawns were treated—an indication of how easily the chemical is tracked inside on the little feet of dogs, cats, and kids.

Thanks to pressure from campus activists, my university replaced 2,4-D with “softer” herbicides and began putting signs on lawns that had just been sprayed. Of course, 2,4-D is one of scores of pesticides in use. According to David Pimentel, professor emeritus of entomology at Cornell University, 110,000 people suffer adverse health effects from pesticides every year, and 10,000 cases of cancer in humans may be attributable to pesticide exposure.

 

The Greening of America

In 1900, 60 percent of Americans lived in rural areas. Today, 83 percent live in cities or suburbs. With that change has come an astonishing shift in the landscape. Over the past half century, Americans have become obsessed with grass. When you add up the country’s 80 million home lawns and over 16,000 golf courses, you get close to 50 million acres of cultivated turf in the United States, an expanse roughly the size of Nebraska. This space is growing by 600 square miles a year.

By 1999, more than two thirds of America’s home lawns had been treated with chemical fertilizers or pesticides—14 million by professional lawn-care companies. A year later, the U.S. General Accounting Office reported that Americans were spraying 67 million pounds of synthetic chemicals on their grass every year, and annual sales of lawn-care pesticides had grown to $700 million.

The landscaping trucks rolling through our suburban neighborhoods seem to represent something more than a communal desire for lush grass. Could it be relief from anxiety? (Why else call a company Lawn Doctor?) For one thing, hiring lawn-care specialists is a public declaration that you have the money not to take care of your yard yourself.

Diligent lawn maintenance and chemical use are also associated with approval and social status, Ohio State researchers reported in 2012: “The main factor influencing a homeowner’s decision to use lawn chemicals is whether neighbors or other people in the neighborhood use them. Homeowners crave acceptance from their neighbors and generally want their lawns to fit in with their surrounding community, so they adopt their neighbors’ practices.”

We also create manicured lawns to play the most chemically dependent of pastimes: golf. By 2004, there were just under 15,000 golf courses in the United States—a patchwork of chemically treated turf the size of Rhode Island and Delaware combined.

Even grass seed comes coated with chemicals. A close look at a bag of Scotts grass seed reveals it has been treated with Apron XL fungicide, whose active ingredient is Metalaxyl-M, or methyl N-(methoxyacetyl)-N-(2,6-xylyl)-D-alaninate. The bag requests that the product be stored away from foodstuffs, kept out of the reach of children, and not be applied near water, storm drains, or drainage ditches. (A Scotts spokesperson says that its products are designed to be safe when used as directed.)

As the use of chemicals has become widespread, lawn companies have found an unexpected source of profits. Herbicides like 2,4-D preserve grass but kill weeds like clover. Clover, however, pulls nitrogen out of the air and fixes it in the soil. Without clover, soil becomes nitrogen poor and fails to support plant life. So chemical companies now replace the depleted nitrogen, which homeowners used to get for free from clover, with synthetic nitrogen, for which they have to pay.

In America’s watersheds, nitrogen runoff is considered among the worst problems for water quality. Since synthetic fertilizers are water soluble, a good amount runs off your lawn after a rain, where it mixes with runoff from other homes and ends up feeding the plants in bodies of water. Doused with chemicals, algae grow and grow, creating “algae blooms” that—as they decay and die—suck most of the oxygen out of rivers, lakes, and bays and lead to massive “dead zones,” in which neither fish nor plants can live.

In 2007, the Chesapeake Bay Foundation published a report card on the bay’s health that showed just how much trouble chemicals can pose. The bay received an F for nitrogen pollution, a D-minus for phosphorous, an F for water quality, an F for dissolved oxygen, and a D for toxics. On a scale of 100 (with 100 being the best), the bay’s health was rated at 28.

In California, scientists are discovering that algae blooms off the coast not only remove oxygen; they also release a toxin, domoic acid. It enters the food chain when fish eat algae, then moves into the sea lions that consume the fish. If a sea lion is pregnant, her fetus can be contaminated, and years later, that mammal may develop epilepsy.

 

One Man’s Chemical Conversion

Paul Tukey knows about pesticides; the man who invented 2,4-D was a distant cousin. When Tukey was a kid in the late 1960s, his grandfather hired a biplane to spray his 300 acres of fields in Maine a couple of times a year. The fields were mostly planted with cattle feed, not with crops intended for human consumption. For Tukey, spraying day was a thrill.

“My grandfather would go out in the field, dressed in his wool underwear and thick heavy pants, and wave the biplane over his field,” Tukey recalled. “They’d drop this white powder, and he’d get back in the truck looking like Frosty the Snowman. Then we’d drive to the next field, and he’d do it again. My grandfather was getting doused 20 times a day, but he would never let me get out of the truck. I always wondered why I couldn’t go out and get dusted.”

Tukey’s grandfather died of a brain tumor at 60.

Tukey also followed his family’s agricultural tradition but charted his own course. For years, he operated one of southern Maine’s largest landscaping services and considered his job ideal. He worked outside in shorts and sandals. He never bothered with putting on protective gear.

In 1993, he started getting nosebleeds. His vision became blurry. But with business booming, Tukey was too busy to worry. One of his jobs was tending the grounds of a hospital where he hired university students for the work. One day, their professor, an eminent horticulturist named Rick Churchill, came by to say hello to his students. Tukey went out to greet him.

Churchill’s eyes were focused on the weeds, which Tukey’s crew had doused with herbicides and which were curling up and turning brown.

Churchill said, “I asked him how anyone in good conscience could be applying pesticides on the grounds of a hospital where there were patients being treated for cancers that could be linked to their exposure to pesticides. I asked whether he knew anything about the toxicity ratings of what he was applying and how dangerous many of these compounds were to an individual compromised by illness.”

The words cut deeply. “It was devastating,” Tukey told me. “In Maine, Rick Churchill is an icon.”

“You have broken bags of poison,” Tukey told the manager. “They all say, ‘Keep out of reach of children’!”

Tukey did some reading, and what he found was troubling. Pediatric cancers in Los Angeles had been linked to parental exposure to pesticides during pregnancy. In Denver, kids whose yards were treated with pesticides were found to be four times more likely to have soft-tissue cancers than kids whose yards were not. Elsewhere, links had been found between brain tumors in children and the use of weed killers, pest strips, and flea collars.

Tukey also learned that exposure to lawn chemicals was particularly alarming for people who spread them for a living. One study showed a threefold increase in lung cancer among lawn-care workers who used 2,4-D; another found a higher rate of birth defects among the children of chemical appliers. When he finally went to the doctor for his rashes and deteriorating eyesight, he learned that he had developed multiple chemical sensitivity. And his son—conceived in 1992, during the height of Tukey’s use of synthetic chemicals—was diagnosed with one of the worst cases of ADHD his physician had ever seen. (Several recent scientific reports suggest that toxic chemicals may play a role in ADHD.)

“All the evidence indicates that you don’t want pregnant women around these products, but I was walking into the house every single night with my legs coated with pesticides from the knees down,” he said. “Even when my son was a year or two old, … [he] would greet me at the door at night by grabbing me around the legs. He was getting pesticides on his hands and probably his face too.”

Tukey’s Breaking Point

In the midst of his research, Tukey was driving one day when he saw a sign: A store was having a big sale on Scotts Turf Builder. Tukey made a beeline. He was going to buy the store’s entire stock. Once inside, he walked to the lawn-care section. Tukey noticed a woman standing by the lawn chemicals. At her feet, a girl was making sand castles from a broken bag of pesticides. Suddenly, something in him burst—the DDT squirting over his grandfather’s fields, the chemicals that he’d sprayed outside the hospital, and now a child in a pile of pesticides.

Tukey told me, “I said, ‘Ma’am, you really shouldn’t let your child play with that. It’s not safe.’ I’m fundamentally shy, but this just came out of me.”

The store wouldn’t sell the stuff if it wasn’t safe, she told Tukey. She took her child and walked away. A manager came up and asked him if there was a problem. Tukey said there was.

“You have broken bags of poison on the floor,” Tukey said to the manager. “All those bags say, ‘Keep out of reach of children’!”

Those labels are there because of government formality, the manager said. The stuff isn’t dangerous. The store wouldn’t carry it if it was.

“That really was the stake in the heart of my chemical career,” Tukey said. “By then, I’d already made myself sick. I’d already been questioned by Rick Churchill. When I saw that girl making sand castles out of the pesticides, [there] was just a sudden gut-level reaction I couldn’t have anticipated. I was shaking when I left the store.”

Tukey issued a decree to his employees: His business was going organic. It was time to start weaning his company—and customers—off synthetic chemicals. Most clients were fine with his decision, just as long as it didn’t cost any more and as long as their lawns continued to look the same.

More than 170 municipalities in Canada have banned lawn pesticides, especially on public spaces like school yards and sports fields. Denmark, Norway, and Sweden have banned 2,4-D. In 2009, the European Parliament passed laws banning 22 pesticides that can cause cancer or disrupt human hormones or reproduction.

 

How to Bring Back Butterflies

Certainly, switching to a less toxic lawn company can reduce your family’s—and neighbors’—exposure to synthetic chemicals. It would also reduce the pollutants you contribute to the watershed. But there is another option, one that gets into the more inspiring realm of restoration. There is a way to think of your yard as more than a burden that needs to be mowed and weeded. There is a way to think of your yard as transformational, even magical. Doug Tallamy can show you how.

When Tallamy, former chair of the entomology department at the University of Delaware, walks around his yard, he sees things most of us would not. He can look at a black cherry tree and spot the larvae of 13 tiger swallowtail butterflies. He has planted scores of trees: sweet gums, tulips, white oaks, river birches, and sugar maples. But he’s really interested in bugs and birds—and boosting their numbers.

Suburban development has been devastating to avian populations. Most of the birds we see in our yards are probably house sparrows and starlings, invasive species from Europe. If you study the population numbers for native birds, you’ll find the wood thrush is down 48 percent; the bobwhite, 80 percent; bobolinks, 90 percent. An estimated 72 million birds are killed each year in America by direct exposure to pesticides, a number that does not include baby birds that perish because a parent died from pesticides or birds poisoned by eating contaminated insects or worms. The actual number of birds killed might be closer to 150 million.

In mid-Atlantic gardening circles, Tallamy is a bit of a prophet, his message freighted with both gloom and promise. It is the promise of ecological renewal that he most wants people to understand. His vision is based on three ideas: If you want more birds, you need more native insects; if you want more native insects, you need more native plants; and if you want more native plants, you need to get rid of—or shrink—your lawn.

Tallamy says that when we wake up in the morning to birdsong, it’s often being made by hungry migratory birds that may have just flown 300 miles. What is there to eat? Too frequently, ornamental trees that bear none of the insects the birds need—and chemically treated grass. Tallamy’s prescription: Put in native plants that will make your yard a haven for caterpillars, butterflies, and birds. In the mid-Atlantic region, this can mean swamp milkweed, butterfly weed, buttonbush, joe-pye weed, and a rudbeckia species like black-eyed Susans. At the University of Delaware, Tallamy and a team are restoring native species to the campus.

And me? I ripped up 20 percent of my lawn and planted two flower gardens, two sets of flowering shrubs, and seven vegetable beds. Now my daughter helps me pick eggplants, tomatillos, okra, and Swiss chard. My son can identify not only monarchs and tiger swallowtails but also which plants they like to eat. How? Because last year the butterflies were not here, and this year they are. We replaced the grass, which monarch caterpillars can’t eat, with native flora they can consume. It’s as simple as that. Milkweed and joe-pye weed were born to grow here. All you have to do is plant them and wait for the butterflies.

 

Wise Moves for a Lush Lawn

1. Get tested. “Spending money on fertilizer without a soil test is just guessing,” says Paul Tukey. Good soil is key to a great lawn, and a soil test can tell you what’s in the dirt and what’s missing. For a test, call your county extension office (a national network of agriculture experts).

2. Plant clover with your grass. Clover competes with weeds and fixes nitrogen in the soil. John Bochert, a lawn and garden specialist in York, Maine, recommends a seed mix of white clover, perennial rye (it germinates quickly), fescue, and bluegrass.

3. Mow high, and leave the clippings. Taller grass provides more leaf for photosynthesis, develops deeper roots, and resists weeds. The clippings act as fertilizer. “Lawns mowed at four inches are the most weed-free,” Tukey says. “If you did only one thing, adjusting your mower height would be it.”

4. Cut back on watering. Frequent watering leads to shallow roots, so “water once a week if at all,” says Tukey

5. Apply compost. “Weeds need light to grow,” Tukey says. “Spreading compost on a lawn in the spring prevents weed seeds from germinating.”

6. Listen to weeds … “Weeds are nothing if not messengers,” says Tukey. “Dandelions are telling you the ground needs more calcium. Plantains are telling you the ground is too compact and needs aerating.”

7. … and to insects. Beneficial nematodes, which are microscopic worms, eat some 200 species of insects, including grubs that become Japanese beetles; you can buy them from farm and garden stores. Mix them in water, and spray them on your lawn.

 

 

 

Read Full Post »

Trade Secrets Documentary by Bill Moyers

 

 

Trade Secrets – Transcripts

TRADE SECRETS: A MOYERS REPORT
PROGRAM TRANSCRIPT

TEASE:

NARRATION: They are everywhere in our daily lives – often where we least expect them.

DR. PHILIP LANDRIGAN, CHAIRMAN, PREVENTIVE MEDICINE, MT. SINAI SCHOOL OF MEDICINE: We are conducting a vast toxicologic experiment, and we are using our children as the experimental animals.

NARRATION: Not a single child today is born free of synthetic chemicals.

AL MEYERHOFF, FORMER ATTORNEY FOR THE NATURAL RESOURCES DEFENSE COUNCIL: With chemicals, it’s shoot first and ask questions later.

NARRATION: We think we are protected but, in fact, chemicals are presumed safe – innocent – until proven guilty.

SANDY BUCHANAN, EXECUTIVE DIRECTOR, OHIO CITIZEN ACTION: Years of documents have shown that they knew they were hurting people, much like the tobacco industry.

PROFESSOR GERALD MARKOWITZ Ph.D, JOHN JAY COLLEGE: Historians don’t like to use broad political terms like “cover-up,” but there’s really no other term that you can use for this.

NARRATION: In this special investigation, we will reveal the secrets that a powerful industry has kept hidden for almost fifty years.

TRADE SECRETS: A Moyers Report

PROLOGUE:

NARRATION: There is a three-hundred mile stretch along the coast where Texas and Louisiana meet that boasts the largest collection of petrochemical refineries and factories in the world.

Many who live and work here call it “Cancer Alley.”

RAY REYNOLDS: Many, many nights we were walking through vapor clouds and you could see it. You know how a hot road looks down a long straight? Well, that’s exactly what it looks like – wavy. We would complain about it, and they would pacify us by saying, there’s no long term problem. You might have an immediate reaction like nausea, but that’s only normal. Don’t worry about it.

NARRATION: In the living room of his house a few miles from the chemical plant where he worked for 16 years, Ray Reynolds waits out the last days of his life. He is 43 years old. Toxic neuropathy – poisoning – has spread from his nerve cells to his brain.

MOYERS: What’s the prognosis? How long do they give you?

REYNOLDS: They don’t. There’s too many variables, and there’s too much unknown about it.

NARRATION: Dan Ross had no doubt about what made him sick. Neither does his wife of 25 years, Elaine.

ELAINE ROSS: Went to a dance one night, and he walked in the door, and I had never seen him before, didn’t know what his name was or anything, and he started shooting pool with a bunch of his friends, and the friend that I was with, I told him, I said, “That’s who I’ll spend the rest of my life with.”

MOYERS: Love at first sight?

ROSS: Uh huh.

MOYERS: Did he think that?

ROSS: No.

MOYERS: You had to, had to…

ROSS: I had to persuade him. When we got married, he was still in the Air Force, so he spent eighteen months overseas. When he got back, he had an eighteen-month-old daughter. And so probably the main thing was, he was worried about making a living for everybody, for us.

NARRATION: The plant where Dan Ross made that living produces the raw vinyl chloride that is basic to the manufacture of PVC plastic.

ROSS: Danny worked for them 23 years – and every single day that he worked, he was exposed. Not one day was he not exposed.

As the years went by, you could see it on his face. He started to get this hollow look under his eyes, and he always smelled. I could always smell the chemicals on him. I could even smell it on his breath after a while. But even up until he was diagnosed the first time, he said, “They’ll take care of me. They’re my friends.”

NARRATION: In 1989, Dan Ross was told he had a rare form of brain cancer.

ROSS: He and I never believed in suing anybody. You just don’t sue people. And I was looking for answers. Since I couldn’t find a cure, I wanted to know what caused it.

NARRATION: Looking for an answer, she found something that raised more questions instead.

ROSS: I was just going through some of his papers, and I found this exposure record. It tells you what the amount was that he was exposed to in any given day.

MOYERS: Somebody’s written on here, “Exceeds short-term exposure.” What does that mean?

ROSS: That it was over the acceptable limit that the government allows. So this exceeded what he should have been exposed to that day.

NARRATION: There was also a hand-written instruction.

MOYERS: And then there’s writing that says?

ROSS: “Do not include on wire to Houston.”

MOYERS: Don’t send this to the headquarters?

ROSS: Right.

ROSS: My question was: Why wasn’t it included – why was it held up from going to Houston?

MOYERS: What did you take that to mean?

ROSS: Somebody’s trying to cover something up. Why?

NARRATION: Her discovery led Dan and Elaine Ross to sue.

ROSS: And I promised him that they would never, ever forget who he was, ever.

DOCUMENT WAREHOUSE

NARRATION: And this is the result of that vow.

MOYERS: How long did it take you to gather all this?

WILLIAM BAGGETT, JR, ATTORNEY: Ten years.

NARRATION: Over those ten years, attorney William Baggett, Jr. waged a legal battle for the Rosses that included charges of conspiracy against companies producing vinyl chloride. Dan’s employers – and most of the companies – have now settled. But the long legal discovery led deeper and deeper into the inner chambers of the chemical industry and its Washington trade association. More than a million pages of documents were eventually unearthed.

In these rooms is the legacy of Dan Ross.

We asked to examine the documents buried in these boxes – and discovered a shocking story.

It is a story we were never supposed to know – secrets that go back to the beginning of the chemical revolution.

NARRATION: It was love at first sight. In the decade after World War II, Americans opened their arms to the wonders of chemistry.

Synthetic chemicals were invented to give manufacturers new materials – like plastic.

Pesticides like DDT were advertised as miracle chemicals that would eradicate crop pests – and mosquitoes.

The industry boomed.

Since then, tens of thousands of new chemicals have been created, turned into consumer products or released into the environment. We use them to raise and deliver our food. We clean our carpets and our clothes with them. Plastics carry everything from spring water to cooking oil. They’re in our shower curtains and in our blood bags. They are the material of choice in our children’s toys.

But there are risks that come with the benefits of the chemical revolution.

MT. SINAI SCHOOL OF MEDICINE

MOYERS: In this arm?

NURSE: Preferably, if that’s where your vain is good at.

NARRATION: Specialists in public health at the Mt. Sinai School of Medicine in New York – led by Dr. Michael McCally – are trying to assess how many synthetic chemicals are in our bodies. For the purpose of this broadcast, I volunteered take part in their study. A much larger project is underway at the US Centers for Disease Control.

MOYERS: And you’re looking for chemicals?

DR. MICHAEL McCALLY, VICE-CHAIRMAN, PREVENTIVE MEDICINE, MT. SINAI SCHOOL OF MEDICINE: Not the body’s normal chemicals. We’re looking for industrial chemicals, things that weren’t around 100 years ago, that your grandfather didn’t have in his blood or fat. We’re looking for those chemicals that have been put into the environment, and through environmental exposures – things we eat, things we breathe, water we drink – are now incorporated in our bodies that just weren’t there.

MOYERS: You really think you will find chemicals in my body?

McCALLY: Oh yes…no question. No question.

DOCUMENTS

NARRATION: These secret documents reveal that the risks were known from the beginning. The chemical industry knew much more about its miracle products than it was telling. And one of the most toxic was vinyl chloride – the chemical Dan Ross was working with.

PROFESSOR GERALD MARKOWITZ Ph.D., JOHN JAY COLLEGE: One of the indications they knew they should have been telling the work force and public about this is that they mark all these documents “secret,” “confidential.” They tell each other in these documents – “Keep this within the company, do not tell anybody else about this problem.” So they know this is dynamite.

NARRATION: Gerald Markowitz and David Rosner are historians of public health in New York. They were retained by two law firms to study the Ross archive.

DAVID ROSNER, Ph.D., COLUMBIA UNIVERSITY: They certainly never expected historians to be able to look into the inner workings of their trade association and their vinyl chloride committee meetings and the planning for their attempts to cover up and to basically obscure their role in these workers’ deaths.

NARRATION: The hidden history begins with a document from May, 1959.

To: Director, Department of Industrial Hygiene, The BF Goodrich Company.

“We have been investigating vinyl chloride a bit. … We feel quite confident that 500 parts per million is going to produce rather appreciable injury when inhaled 7 hours a day, five days a week for an extended period.”

NARRATION: It is early correspondence among industry medical officers who were studying the effects of working with vinyl chloride. At the time, workers were regularly exposed to at least 500 parts per million.

November 24, 1959. Inter-company Correspondence, Union Carbide.

“An off-the record phone call from V.K. Rowe gives me incomplete data on their current repeated inhalation study. …Vinyl chloride monomer is more toxic than has been believed.”

NARRATION: BF Goodrich was one of the vinyl chloride producers in on the industry’s private conversations.

BERNARD SKAGGS: I started there in June–it was June the 3rd, 1955.

MOYERS: ’55.

SKAGGS: Uh-huh.

MOYERS: When you began, did you think the work might be dangerous?

SKAGGS: No. They told us it wasn’t. The only thing we had to watch about the vinyl chloride was not getting enough of it pass out.

NARRATION: Fresh out of the Army, Bernard Skaggs went to work at the BF Goodrich plant in Louisville, Kentucky.

There, vinyl chloride gas was turned into a dough-like mixture that was then dried and processed into the raw material for PVC plastic. Bernie Skaggs’ job was to climb into the giant vats that spun and mixed the vinyl chloride – and chip off what was left behind. Workers called it “kettle crud.”

SKAGGS: There was vinyl chloride everywhere. The valve, overhead valves had charging valves over there where the vinyl chloride was pumped into the reactors. All of those leaked and dripped. Most of them dripped on the floor all the time. They said it had to be – I think it was – 1,500 parts per million before you could smell it. Not only could you smell it, you could see it. It would – it would get into a vapor, and through the sunlight it waved, waves, and you see it. It was all the time that way.

My hands began to get sore, and they began to swell some. My fingers got so sore on the ends, I couldn’t button a shirt, couldn’t dial a phone. And I had thick skin like it was burned all over the back of my hand, back of my fingers, all the way up under my arm, almost to my armpit. And after enough time, I got thick places on my face right under my eyes…

MOYERS: Did you think it might be related to your job?

SKAGGS: At the start, no.

NARRATION: BF Goodrich would discover the truth.

From: The BF Goodrich Company To: Union Carbide, Imperial Chemical Industries, and The Monsanto Company.

“Gentlemen: There is no question but that skin lesions, absorption of bone of the terminal joints of the hands, and circulatory changes can occur in workers associated with the polymerization of PVC.”

NARRATION: In other words, they knew vinyl chloride could cause the bones in the hands of their workers to dissolve.

“Of course, the confidentiality of this data is exceedingly important.”

MOYERS: What does this memo tell you? This particular memo?

ROSNER: Oh, it tells me the industry never expected that they would be held accountable to the public about what was happening to the work force. They never even expected their workers to learn of the problems that they were facing and the causes of it.

NARRATION: Bernie Skaggs’ hands were eventually X-rayed.

SKAGGS: I was really shocked.

MOYERS: What did you see?

SKAGGS: Well, on the hands, my fingers were all–you know, showed up–the bones showed up white in the x-ray.

MOYERS: In a normal x-ray.

SKAGGS: Yeah, normal x-ray, yeah. And mine were okay till they got out to this first joint out there. Then from there out, most of it was black. Some of them had a little half moon around the end, and then just a little bit beyond the joint. And I said, “What is that? You’ve really surprised me.” He said, “That–the bone is being destroyed.”

MOYERS: The black showed that there was no bone there.

SKAGGS: Yeah, right. The bone was disappearing, just gone.

MOYERS: Dissolving?

SKAGGS: Yeah.

RICHARD LEMEN Ph.D., FORMER DEPUTY DIRECTOR, NIOSH: It was the slowness of action on the industry’s part that was the most striking issue in reviewing these documents.

NARRATION: Dr. Richard Lemen was deputy director of the National Institute for Occupational Safety and Health until he retired five years ago. The Baggett law firm hired him to analyze the secret documents.

LEMEN: The basic tenet of public health is to prevent, once you have found something, immediately stop exposure.

MOYERS: So they should have told the workers right then.

LEMEN: They absolutely should have told the workers. Even if it was only a suspicion, they should have told the workers what they knew and what they could do to prevent their exposure to what they thought was causing the disease.

NARRATION: That is not what happened. BF Goodrich did not tell the workers, even though its own medical consultants were reporting the truth.

October 6, 1966

“The clinical manifestations are such as to suggest the possibility of a disabling disease as a later development.”

NARRATION: What the company’s advisers feared was that the dissolving hand bones could be a warning of something even more serious.

“May be a systemic disease as opposed to a purely localized disease (fingers). …They (Goodrich) are worried about possible long term effect on body tissue especially if it proves to be systemic.”

MOYERS: “…proves to be systemic.” What’s that saying? Interpret that for a layman.

LEMEN: What that’s saying is that this disease may be much beyond just the fingertips, that it could have effects on other organs in the body or other parts of the body.

MARKOWITZ: If all the doctor is looking for is concerns about tops of the fingers and has not been told in the medical literature that this might be a systemic disease, that this information is kept within the chemical industry, then that worker is going to be misdiagnosed. The worker’s condition is going to get worse, and there is no telling what the effects are going to be for that worker.

MOYERS: He could die not knowing what had killed him.

MARKOWITZ: Absolutely.

NARRATION: Goodrich executives did tell other companies what was happening. But they hoped…

“They hope all will use discretion in making the problem public. …They particularly want to avoid exposes like Silent Spring and Unsafe at Any Speed.”

MARKOWITZ: They understand the implications of what is before them and they are faced with a situation that could explode at any minute, and they are…

MOYERS: Politically.

MARKOWITZ: Politically, culturally, economically – this could affect their whole industry if people feel that this plastic could represent a real hazard to the work force, and if it could present a hazard to the work force, people are going to wonder, consumers are going to wonder what is the impact that it could have for me.

WASHINGTON, D.C.

NARRATION: On April 30, 1969 – ten years after Bernie Skaggs first complained to the company doctor about the pain in his hands – members of the industry’s trade association met at their Washington offices. On the agenda was a report from a group of medical researchers they had hired.

Confidential. Recommendations.

“The association between reactor cleaning and the occurrence of acroosteolysis is sufficiently clear cut. The severity of exposure of reactor cleaner to vinyl chloride should be kept at a minimum…”

NARRATION: The advisers recommended that exposure to vinyl chloride be reduced by ninety per cent – from 500 parts per million to 50 parts per million. But the Occupational Health Committee rejected the recommendation.

“A motion to accept the report as submitted was defeated by a vote of 7 to 3.”

NARRATION: Instead, they changed the report.

“Eliminate the last sentence ‘Sufficient ventilation should be provided to reduce the vinyl chloride concentration below 50 parts per million.'”

MOYERS: What’s stunning to me is that at this meeting were, representing the companies, many people with MDs behind their name, MD the chairman, MD the vice chairman, MD, MD, MD. And they were among those voting against the researchers who had said we’ve got a problem here.

LEMEN: I think that that reflects who the medical doctor’s patient really was. Was their patient the workers in the plant – or were they representing their employer? This is a fundamental problem that we’ve had in public health for a long time – and that is, who is more important? Is it the chemical being produced or is it the human being producing the chemical?

NARRATION: For ten years, the bones in his fingers were disappearing. In that time, the industry never told him what it knew. Bernie Skaggs was kept in the dark – until a few months ago, when we handed him one of the secret documents.

MOYERS: There it is, in black and white. Do you want to read it?

SKAGGS: “There is no question but that skin lesions, absorption of bone of the terminal joints of the hands and circulatory changes can occur in workers associated with polymerization of PVC.”

MOYERS: That was describing the condition you had.

SKAGGS: Right, right.

MOYERS: At the same time they were –

SKAGGS: They were resisting anything –

MOYERS: They didn’t say they knew anything –

SKAGGS: And that bothers me, you know. Well, to think that they’d be this dishonest with me. After all of these years – and I put 37-1/2 years in that place – and that they could be dishonest enough not to even ever admit to me that what they did and what they had was what caused my problem.

MOYERS: Then there’s another. Let me read this. The consultants said “This may be a systemic disease, as opposed to a purely localized disease.”

SKAGGS : This is the first I’ve heard of this. I didn’t know that. The company did a good job of I guess I’d call it brain washing. They actually told us, and they told us this, that this vinyl chloride won’t hurt you.

MOYERS: What do you think when you look at all these documents?

SKAGGS: Makes me more bitter than I was.

NARRATION: By the early 1970s, Dustin Hoffman had been famously advised in the movie, “The Graduate,” that “plastics” was the future. But the vinyl chloride industry was hearing something else.

A scientist at an Italian plant, Dr. P.L. Viola, had exposed laboratory rats to vinyl chloride – and discovered cancer. As he steadily lowered the exposure levels in his tests, the cancer persisted. The discovery cast a pall over the promising future of plastic.

NARRATION: On November 16, 1971, the men from twenty vinyl chloride-producing companies gathered at the Hotel Washington to discuss the bad news.

“Publishing of Dr. Viola’s work in the US could lead to serious problems with regard to the vinyl chloride monomer industry.”

MOYERS: How would you characterize the industry discussion?

ROSNER: Close to panic. There is a whole new ball game out there about who is going to regulate industry, how much influence industry will have over these agencies, and the discovery of cancer, of course, is, you know, potentially not only a public relations disaster, but a regulatory disaster for this industry.

NARRATION: At the meeting, one of the European industry’s own scientists presented an even more disturbing report.

“Doctor LeFevre theorizes that vinyl chloride is absorbed in body fats and carried to the brain.”

NARRATION: Despite the startling prospect that vinyl chloride could affect the brain, the companies took no action – and told no one.

“The present political climate in the US is such that a campaign by Mr. R. Nader and others could force an industrial upheaval via new laws or strict interpretation of pollution and occupational health laws.”

NARRATION: A year later, another Italian researcher, Dr. Cesare Maltoni, found evidence of a rare liver cancer – angiosarcoma. In studies sponsored by the European industry, cancer appeared in rats exposed to levels of vinyl chloride common on factory floors in the US. The panicked industry came running.

MARKOWITZ: Two or three American representatives of the chemical industry go over to Bologna and the Europeans tell them that there are cancers now not only at the very high levels, at thousands of parts per million, but down to 250 parts per million. And yet they are determined to keep this secret. And they go so far as to even sign a secrecy agreement between the Europeans and the Americans so that each of their researchers will be secret from everybody outside the industry.

MOYERS: They get together, the American representatives and the European representatives, and they say this is top secret, we are not going to make it public…

MARKOWITZ: Exactly. They…

MOYERS: …to anybody? To the workers?

MARKOWITZ: To the workers.

MOYERS: To the doctors?

MARKOWITZ: To the doctors. No one is going to get this information except the companies who have signed the secrecy agreement.

NARRATION: Conoco, BF Goodrich, Dow, Shell, Ethyl, Union Carbide – some of the founding fathers of the chemical revolution – were among those who signed the secrecy agreement, even as they were admitting to themselves the bad news.

February 13, 1973. Union Carbide. Internal Correspondence. Confidential.

“Dow Chemical Company reviewed the work on the European study. They report the results on rats are probably undeniable.”

Ethyl Corporation. Inter-Office. Subject: Vinyl Chloride.

“All agreed the results certainly indicate a positive carcinogenic effect above or at 250 parts per million.”

NARRATION: The companies knew. Working with vinyl chloride – even at low levels of exposure – could cause cancer.

WASHINGTON, DC

NARRATION: By 1973, the federal government was trying to catch up with the chemical revolution.

A new agency – the National Institute for Occupational Safety and Health – NIOSH – published an official request seeking all health and safety information regarding vinyl chloride.

Two months later, a staff member of the industry’s trade association sent a letter to member companies urging that they tell NIOSH about Dr. Maltoni’s findings.

March 26, 1973

“There is the aspect of moral obligation not to withhold from the Government significant information having occupational and environmental relevance… ”

MCA BUILDING

May 21, 1973. Manufacturing Chemists Association. Minutes of meeting.

NARRATION: But meeting in their conference room in Washington, they discussed keeping secret what they knew of the dangers posed by vinyl chloride.

“We should not volunteer reference to the European project, but in response to direct inquiry, we could not deny awareness of the project and knowledge concerning certain preliminary results.”

MARKOWITZ: It is an extraordinary situation where they know they should be telling the Government about this problem. They know that they are wrong not to tell them. And then they admit that their engaging in this kind of activity can be legitimately seen as evidence of an illegal conspiracy.

May 31, 1973. Union Carbide. Internal Correspondence. Confidential.

NARRATION: A Union Carbide executive reported to corporate headquarters that if the March letter admitting knowledge of Maltoni’s work ever became public, it could…

“could be construed as evidence of an illegal conspiracy by industry…if the information were not made public or at least made available to the government.”

ROSNER: You kind of avoid as a historian the idea that there are conspiracies or that there are people planning the world in a certain way. You just try to avoid that because it’s–it seems too–too unreal and too frightening in its implications. Yet, when you look at these documents, you say yes, there are people who understood what was going on, people who thought about the crisis that was engulfing them or about to engulf them and tried in every which way to get out of that crisis and actually to, in some sense, to suppress an issue.

MOYERS: Do you think all of this added up to, to use your word, a conspiracy?

ROSNER: In a moral sense, I think it was a conspiracy.

NARRATION: We have learned from the secret archive that when the industry met with NIOSH, it did not mention Maltoni or angiosarcoma.

Union Carbide. Internal Correspondence. Confidential.

“The presentation was extremely well received and …the chances of precipitous action by NIOSH on vinyl chloride were materially lessened. NIOSH did not appear to want to alienate a cooperative industry.”

MARKOWITZ: Historians don’t like to use broad political terms like “cover-up,” but there is really no other term you can use for this because the industry had the information. They knew the significance of the information they had, and they refused to tell the Government because they were afraid the Government would take action to protect the work force.

MOYERS: And yet, during this time, Dan Ross and others like him, working in vinyl chloride plants, were being told there was nothing to worry about, that there is no danger.

MARKOWITZ: That’s correct. The industry kept assuring the work force that there was not anything that they need to be concerned about and that they were going to protect the work force.

MOYERS: But they didn’t.

MARKOWITZ: No, they certainly did not.

LAKE CHARLES, LOUISIANA

NARRATION: The companies involved were among those producing more than five billion pounds of vinyl chloride every year – and they were expanding. In 1967, one of them – Conoco – was finishing construction of a new complex in Lake Charles, Louisiana. Dan Ross moved his family into a small house less than a quarter of a mile from the new plant’s back door.

ELAINE ROSS: He went to work there, he started as a pumper loader. And he moved up fast in the first year that he was there.

MOYERS: He was eager for hard work or…

ROSS: Or he was smart, he was smart, and a hard worker.

NARRATION: Another early hire at Conoco was Everett Hoffpauir – who took the job shortly after he returned from serving in Vietnam.

EVERETT HOFFPAUIR: We were in the start-up phase, and early operation phase, and they were getting all the bugs out of it, and we had a lotta releases, and we had a lotta problems. Prevailing attitude with management at the time was “Let’s get it back online; downtime is killing us.” So as long as it wasn’t gonna blow sumpin’ up, go on in there and do what you gotta do.

MOYERS: You were breathing it?

HOFFPAUIR: We were breathing it, get higher than a Georgia pine sucking on it, you know. It’s very intoxicating. It’s a lot like propane or any other light end, it’s aromatic and, like I say, it did give you a buzz if you stayed in it long enough.

Their attitude was, if you don’t wanna do the job, there’s four waitin’ at the gate waiting to take your job. Do it – or else.

Vietnam was winding down, had a lot of people that weren’t working or if they were, were working for a lot less money. And plant jobs were very attractive. So if you didn’t want to do the work, just say so – somebody’s waitin’ to take your place.

MOYERS: So you’d worry more about your job than about your health?

HOFFPAUIR: Well, sure you were. I had a wife and three kids at home that I had to feed, you know. Yeah. But nobody told you it was a real health hazard, so you didn’t worry about it.

NARRATION: But the companies were worried.

December 14, 1971. Ad hoc planning group for Vinyl Chloride Research.

NARRATION: To counter the damaging information from the European animal studies, the industry commissioned a confidential study of its own workers that it planned to use in its defense.

“The need to be able to assure the employees of the industry that management was concerned for, and diligent in seeking the information necessary to protect their health. The need to develop data useful in defense of the industry against invalid claims for injury for alleged occupational or community exposure.”

MARKOWITZ: They are telling the scientists this is what we want. They are giving them the money to do the research, and the scientists know that in the end, they have got to come up with something that is approximate to what their funders are interested in.

MOYERS: In other words, they were saying to the epidemiologists, the researchers, the scientists, here is the end we want. Produce the science to get us there.

ROSNER: That’s right.

MARKOWITZ: When research is conducted in that way where you are trying to protect the industry, rather than give the industry the information it needs to protect the work force and the public, the process of science is absolutely corrupted.

LEMEN: Good science is to design a study that will determine whether or not there is an effect from the exposure to the chemical. And you should design that study with the greatest amount of power, the greatest amount of ability to detect whether or not there is an effect. Therefore, you should study those workers that are most directly exposed and eliminate workers that don’t have exposure. That was not done.

MOYERS: Go to the pool of affected workers, not the pool of workers who might be on the margin of the process.

LEMEN: Absolutely. They didn’t do that. They included workers in their study that were probably not ever exposed to vinyl chloride.

MOYERS: So if you bring in secretaries and managers or people out driving trucks, you’re diluting the impact of your study.

LEMEN: Absolutely. Absolutely. And you can’t get a true result when you do something like that.

NARRATION: The researchers were restricted to studying employment records and death certificates. They did not interview the workers themselves.

MARKOWITZ: They were in, from their perspective, a terrible bind. They wanted the information to know if the workers had suffered any injury as a result of exposure to vinyl chloride, but they didn’t want to tell the workers that they might have been exposed to vinyl chloride and that there was a danger in that exposure. So they didn’t want to even alert the workers in any form through these surveys that they might have had a problem that they should investigate themselves, that they should consult with their doctors about, that they should be worried about.

NARRATION: The confidential documents reveal other efforts that affected the outcome.

October 15, 1973. Vinyl Chloride Epidemiological Study. Progress Report.

“Several companies have indicated that they do not wish their terminated employees to be contacted directly.”

LEMEN: If you have workers that have left employment, they may have left because they were sick. They may have left because they had had some reason to leave. And excluding them from the study gives you a very biased result.

NARRATION: The companies also worried that if researchers contacted the families of workers who had died, someone might get suspicious.

“This becomes even more complicated when one seeks information from relatives of past employees who have subsequently died. …In other words, we need the information, but at what risk.”

ROSNER: I think this is how we, as historians, are looking at it. If you could keep that knowledge secret, keep the causes secret, keep the information secret for long enough, workers will die of other things, they’ll vanish from the work force, they’ll go on to other places, they’ll retire and die of diseases that may or may not be directly linked to the experience in the workplace.

MOYERS: How are lay people like me, citizens, supposed to decide what is good and what is bad science?

LEMEN: That’s hard. It’s real hard. Science is easy to manipulate.

NARRATION: In the end, the industry got a report that said what it wanted.

Lake Charles, Louisiana. PPG/Vista.

“Study after study has confirmed there is no evidence that vinyl affects human health – not for workers in the industry, not for people living near vinyl-related manufacturing facilities, not for those who use the hundreds of vinyl consumer and industrial products.”

NARRATION: So workers like Dan Ross were not told why they were getting sick.

ROSS: He came home from work one day, and he was taking off his boots and socks, and I looked at his feet. The whole top of ’em were burned. Now, he had on safety boots, steel-toed, and the whole top of his feet were red where the chemicals had gone through his boots, through his socks, under his feet, and burned them, both feet.

MOYERS: You knew that chemicals had caused it?

ROSS: Oh, yeah. There was no doubt in his mind, because he had been standing in something. I don’t remember what it was. I said, “My God, what was it that goes through leather, steel-toed boots and your socks to do that?” You know, I said, “Don’t get in it again, whatever it was. Don’t get in it again.”

HOFFPAUIR: I got chlorine gas and I went to the hospital, but, you know, it, it was just part a the – it wasn’t an everyday thing that you got chlorine. It was a everyday thing you got vinyl and EDC. Chlorine’s a bad, “bad news doctor” there. It’ll hurt ya. But you weren’t aware. You knew that instantly. You weren’t aware that this insidious little monster was creeping up on you, vinyl chloride was creeping up on you and eating your brain away. And that’s what it all tended out to prove out that it was doing. Just eating your brain up. Who was to know? No one told us. No one made us aware of it.

MOYERS: We can’t live in a risk-free society, can we?

HOFFPAUIR: No, we can’t live in a risk-free society. But we can live in an honest society.

NARRATION: The chemical industry was not being honest with its workers. And it was not being honest with the public.

In beauty parlors across America, hairdressers and their customers were using new aerosol sprays. No one told them they were inhaling toxic gas at exposure levels much higher than on the factory floor.

ROSNER: Vinyl chloride is a gas, and it is used as a propellant in hairsprays, in deodorants at that time, in a whole slew of pesticides and other cans that are propelling chemicals out into the environment. So, if it turns out that this relatively low threshold limit is poisoning workers, what is the potential danger if it ends up poisoning consumers?

NARRATION: Once again, buried in the documents, is the truth the industry kept hidden.

March 24, 1969. BF Goodrich Chemical Company Subject: Some new information.

“Calculations have been made to show the concentration of propellant in a typical small hair dresser’s room. …All of this suggests that beauty operators may be exposed to concentrations of vinyl chloride monomer equal to or greater than the level in our polys.”

NARRATION: The threat of lawsuits gave the industry second thoughts about marketing aerosols.

Union Carbide. Internal Correspondence. Confidential.

“If vinyl chloride proves to be hazardous to health, a producing company’s liability to its employees is limited by various Workmen’s Compensation laws. A company selling vinyl chloride…”

MOYERS: “A company selling vinyl chloride as an aerosol propellant, however, has essentially unlimited liability to the entire U.S. population.” What does that mean?

ROSNER: The problem that they’re identifying is the giant elephant in the corner. It’s the issue of what happens when worker’s comp isn’t there to shield them from suits in court, what happens if people who are not covered by worker’s comp suddenly get exposed to vinyl chloride and begin to sue them for damages to their health.

MOYERS: Unlimited liability.

ROSNER: Unlimited liability. Millions and millions of women, of workers, of people exposed to monomer in all sorts of forms. This is catastrophic. This is potentially catastrophic.

Interoffice Memo. Ethyl Corporation.

“Dow … is questioning the aspect of making sales of vinyl chloride monomer when the known end use is as an aerosol propellant since market is small but potential liability is great.”

ROSNER: They consciously note that this is a very small portion of the vinyl chloride market. So why expose themselves to liability if this minor part of the industry can be excised and the huge liability that goes with it excised?

Allied Chemical Corporation. Memorandum. Subject: Vinyl Chloride Monomer.

“Concerning use of vinyl chloride monomer as aerosol propellant, serious consideration should be given to withdrawal from this market.”

MARKOWITZ: Here you have the industry saying we are going to give up this part of the industry, the aerosol part of the industry, because the liability is so great. But they are not going to inform the work force. They are not going to do anything about protecting the work force because the liability is limited for them. And so it’s a very cynical way of deciding on how you are going to deal with this dangerous product.

They have put people in danger. They have exposed a variety of people to a dangerous product, and, yet, they are not willing to say this is something we did, we didn’t know it, we, you know, had no way of knowing it, whatever excuses they wanted to make up, but they don’t even do that.

NARRATION: Some companies would give up the aerosol business – but quietly. No public warning was issued. Now, 30 years later, those hairdressers and their customers are unaware of the risks to which they were exposed. And it is impossible to know how many women may have been sick or died – without knowing why.

LOUISVILLE, KENTUCKY

NARRATION: 1974. B.F. Goodrich announced that four workers at its Louisville, Kentucky, vinyl chloride plant had died from angiosarcoma – the rare liver cancer uncovered by Dr. Maltoni. A link to their jobs could not be denied.

But neither workers nor the public knew that the companies had kept from them the clear connection between the chemical and the cancer.

WORKER # 1: My test came back bad and I’m only 26 years old, couple of young kids, really scares you.

NARRATION: When news of the four deaths broke, two hundred seventy employees were tested. Blood abnormalities showed up in fifty-five of them.

WORKER # 2: Fifty per cent of the guys I worked with in the late fifties aren’t around now, and that’s a twenty year period. And I’ve been here twenty and a half years.

WORKER #3: It just kindly upsets me and my wife, naturally, and my mother. It’s – I know it’s a problem. It’s, it’s, it’s just – what do you do?

NARRATION: The company provided no answers. But experts like Dr. Irving Selikoff, the country’s leading specialist in occupational disease, rushed to Louisville.

WORKER #4: Have they found anything besides cancer that vinyl chloride might cause? Or have you all looked for anything besides cancer?

DR. IRVING SELIKOFF: The liver can be affected even besides cancer. Scarring can occur in the liver. Fibrosis. The blood vessels can break, the veins can break, and you can get a fatal hemorrhage, even.

WORKER #5: Once you have found that a man has this cancer caused from vinyl chloride, will you be able to cure it?

SELIKOFF: The answer is, no. At this moment, we do not know how to cure angiosarcoma.

BERNARD SKAGGS: My opinion is, if the liver thing had not come to the forefront, I don’t think they would have ever admitted anything.

MOYERS: If those guys hadn’t died.

SKAGGS: If they hadn’t died. I’m thinking about those people that I knew that died needlessly. I’m the fortunate one. I’ve lived through it. I’ve survived it. Some of them were cut off in their youth. I mean, they were young people.

NARRATION: Nine months later – over the objections of industry – the government ordered workplace exposure to vinyl chloride reduced to one part per million.

NARRATION: The aftershocks of the chemical revolution resounded throughout the 1970s. New words began to enter our vocabulary.

In Missouri, oil contaminated with dioxin had been sprayed on the dirt streets of a small working class town. When flood waters spread the poison everywhere, the entire population was evacuated.

In upstate New York, where homes had been built on a long-abandoned chemical dump, children were being born with birth defects. Love Canal was declared a disaster area.

Scientists looking for PCBs found them everywhere – in the mud of lakes and rivers, in birds and fish, and so up into the food chain. They showed up in cow’s milk in Indiana and mother’s milk in New York.

These modern poisons were not only widespread – but long-lasting.

BENZENE

NARRATION: Then came the benzene scare. Although it was known to be toxic, its use in gasoline helped fuel the American economy. But as evidence mounted connecting benzene to leukemia, the Occupational Safety and Health Administration – OSHA – ordered that workplace exposure be lowered to one part per million – a regulation the industry, then producing 11 billion pounds a year, would challenge.

DR. PHILIP LANDRIGAN, CHAIRMAN, PREVENTIVE MEDICINE, MT. SINAI SCHOOL OF MEDICINE: It’s almost inevitable that when a chemical becomes part of the political process that its regulation is going to be delayed. A chemical that has no commercial value is easy to regulate.

NARRATION: To counter the proposed regulation with its own science, the industry created and funded a $500,000 “Benzene Program Panel.”

PETER INFANTE, Ph.D., DIRECTOR OF STANDARDS REVIEW, OSHA: The science at the time was that a) benzene caused leukemia. I think there was no question about that.

MOYERS: There was no doubt in your mind that workers were at risk who were using benzene in those plants?

INFANTE: There was no doubt at all in most scientists that I spoke with. I think the only ones that had a contrary view were some scientists that represented the industry.

NARRATION: Again, the documents reveal that, just as with vinyl chloride, the industry’s own medical officers had known of benzene’s toxicity for a very long time.

MOYERS: Here’s an internal memo from 1958, 43 years ago, from Esso Oil’s medical research division. This came out of their own medical center. Quote: “Most authorities agree the only level which can be considered absolutely safe for prolonged exposure is zero.” What does that say to you?

INFANTE: There’s certainly information that the medical department has, and that information, you know, is not being conveyed to the workers, and that information is not being used to modify behavior by the company.

NARRATION: Instead of changing its behavior, the petrochemical industry turned to the courts to stop the regulation. The companies argued that reducing exposure to benzene would be too costly.

October 11, 1977

“We assert that there is no evidence that leukemia has resulted from exposure to benzene at the current concentration limits. The new and lower limitation on exposure would represent an intolerable misallocation of economic resources.”

NARRATION: The Fifth Circuit Court of Appeals in New Orleans – in America’s petrochemical heartland – ruled that the government had not proved the danger to humans to be great enough to justify the cost to industry. The victory propelled an offensive directed by the now re-named Chemical Manufacturers Association.

September, 1979. A Summary of Progress. Presented to the Board of Directors.

“Gentlemen, this is a campaign that has the dimension and detail of a war. This is war – not a battle. The dollars expended on offense are token compared to future costs.

“The rewards are the court decisions we have won, the regulations that have been modified, made more cost effective or just dropped. The future holds more of the same.”

DBCP

NARRATION: The companies had their battle plan in place when trouble erupted over a little-known pesticide – produced by Dow, Occidental and Shell – called DBCP.

WORKER #1: I worked in the DBCP unit itself manufacturing the chemical. And now after telling me that I shouldn’t worry about anything out there because it can’t hurt me, now to find out that I’m sterile from it, their answer was, don’t worry about that because you can always adopt children.

NARRATION: Talking among themselves, workers had figured out that many of them could not have children. Company officials claimed there was no pattern – and no evidence, even though newly-ordered tests proved disturbing.

WORKER #2: They ran a series of four sperm counts on us over a period of, I guess, two or three months. All my sperm counts came up zero. And I’d never been told in the whole time I’d been working out at Shell that this might happen to me.

NARRATION: What the industry also didn’t tell was that its own scientists had known of the dangers for decades.

Dow Chemical Company Biochemical Research Laboratory. July 23, 1958

“Testicular atrophy may result from prolonged repeated exposure. A tentative hygiene standard of 1 part per million is suggested.”

NARRATION: Dow had treated the report as “internal and confidential,” did not reduce exposure to DBCP – and did not tell the truth.

V.K. ROWE, Dow Chemical Company: It is our regular policy wherever to totally inform people about what the material is that they’re working with and what its potential is. So I can’t say precisely what was said in one situation. It’s generally throughout the company that we try our best to inform people about what are the hazards, how to avoid them and what to do if they have an accident – or what.

WORKER #2: The thing that bothers me, I think, more than anything is the fact that the chemical industry had no interest whatsoever in protecting us through telling us the dangers of what we were working with.

NARRATION: The companies were neither protecting their workers – nor their neighbors. An engineer at Occidental had alerted his plant manager.

April 29, 1975. Inter-office memo.

“We are slowly contaminating all wells in our area and two of our own wells are contaminated to the point of being toxic to animals or humans. THIS IS A TIME BOMB THAT WE MUST DE-FUSE.”

AL MEYERHOFF, FORMER ATTORNEY FOR THE NATURAL RESOURCES DEFENSE COUNCIL: DBCP was a reproductive toxicant, a very powerful carcinogen. It was found in drinking water wells throughout the country. It stayed on the market because to ban it, you first had to have an administrative process within a Government agency that was under great political pressure from power people on Capitol Hill. If you put enough hurdles up even the best-intentioned Government regulator is hamstrung.

NARRATION: The companies kept DBCP on the market for eight more years. And it would take a decade for the best-intentioned regulators to finally reduce the exposure level to benzene. By then, the evidence was so overwhelming the industry did not challenge the regulation. For some, it came too late.

LANDRIGAN: We knew how many chemical workers there were, how many rubber workers, how many petroleum workers, how many workers in other industries that were exposed to benzene, and on the basis of knowing how many were exposed and knowing the levels at which they were exposed, we were able to calculate how many unnecessary deaths from leukemia resulted from exposures during that 10-year delay.

MOYERS: How many?

LANDRIGAN: And the number was 492 unnecessary deaths from leukemia. Deaths that almost certainly would have been prevented if the standard had been reduced to 1 part per million back in the 1970’s.

MOYERS: What are the lessons that you would have us draw from this case of delay?

LANDRIGAN: Well, I think the most fundamental lesson is that we have to presume chemicals are guilty until they are proven innocent. What’s needed is an unpolluted political structure that is empowered to set regulations that protect the public health.

NARRATION: That’s not the political structure the industry wanted.

September 8, 1980. Report to the Board.

“The cold fact is that the Congress today has more influence over the agencies than the White House does.

“For even our best friends in Congress, there’s a limit to how long they’ll support us if the public’s against us.”

WITNESS IN HEARING: The industry’s gotten away with murder. That’s why they don’t move forward. Because it’s cost them some money and some effort, and if they’re not pushed, they won’t move.

“We need real muscle, the kind none of your lobbyists are likely to have as individuals. One growing source of political strength outside Washington is the Political Action Committees. PAC contributions improve access to Members.”

NARRATION: Through almost two hundred quickly-formed political action committees, the industry would contribute over six million dollars to the 1980 election campaign.

“When the time comes to play hardball, we’ll try to make good use of the political muscle you’ve been helping us develop.”

REAGAN INAUGURATION

NARRATION: Ronald Reagan was petrochemical’s favorite Presidential candidate. And four of the top five Senate recipients of the industry’s largesse were Republican challengers who defeated incumbents.

The industry was ready to play hardball.

September 28, 1981. Government Relations Committee. Pebble Beach.

“The Committee believes that the new climate in Washington is more reasoned and responsive. …The election of the Reagan Administration appears to have produced changes which bode well for our industry.”

NARRATION: The Reagan team asked business for a wish-list of actions that could be completed within the first 100 days. In less than a third that time, the new President signed an executive order that transformed the battle over the safety of chemicals.

CHANGES FOR THE BETTER

“President Reagan directed EPA to delay proposing or finalizing regulations until it could be determined that they were cost-effective and necessary.”

NARRATION: A prime target was the one law intended to give the Environmental Protection Agency broad authority to regulate toxic chemicals – the Toxic Substances Control Act – TSCA.

JACQUELINE WARREN, FORMER ATTORNEY FOR THE NATURAL RESOURCES DEFENSE COUNCIL: The whole theory of TSCA was that we’re not going to keep waiting until we can count the bodies in the street. We’re going to do some preliminary steps early on, catch the problems in the laboratory, get rid of them, identify the really bad actors, take some steps to reduce exposures, to find substitutes for these. That was the theory. It just in practice has never worked.

NARRATION: Case in point: A class of chemicals known as phthalates. In 1980, the National Cancer Institute had determined that one phthalate – DEHP – caused cancer in animals. By the time the Reagan Administration came to town, the Chemical Manufacturers Association was already spending hundreds of thousands of dollars on efforts to thwart any regulation.

“We must arm ourselves with cost calculations for alternate environmental control strategies; and we must feed that information to EPA as early as possible.”

NARRATION: Industry representatives and attorneys met three times with the number two man at the EPA. No environmental or consumer organizations were invited – or informed. Jacqueline Warren was one of those closed out.

WARREN: And we weren’t really there to say, “We represent another point of view on this that you should hear before you decide to go along with what the industry might be proposing”, since their interest is much narrower. They’re interested in their bottom line, their stockholders, their product, and they’re not as interested at all in what the potential health or safety or environmental effect of exposure to this might be. In fact, they’d rather keep that quiet if they can.

NARRATION: Although phthalates are widely used in common products from shower curtains to children’s toys, the EPA announced it would take no action to either ban or limit the uses.

MEYERHOFF: We refer to it as the Toxic Substances Conversation Act.

MOYERS: Because?

MEYERHOFF: They built in obstacle after obstacle and process after process where it is virtually impossible to get a known high-risk chemical off the market. There have been very few chemicals that have been actually banned because of their health risks. That’s because chemicals get far more due process than people do.

MOYERS: Chemicals have more rights than people?

MEYERHOFF: Far more rights than people.

NARRATION: The public protested that the Environmental Protection Agency had become a captive agency. What the public protested, the industry celebrated.

January 11, 1982. CMA Board of Directors. Grand Ballroom, Arizona Biltmore.

“Just ten days ago, TSCA celebrated its fifth birthday. The first five years of TSCA have seen numerous rules proposed by the Agency. To date, we have seen none of these types of rules finalized.”

WARREN: In terms of what we thought TSCA was going to mean, we haven’t made a big dent in getting tested the very large number of chemicals that are all over the environment and to which people are exposed to all the time, for which there are some data already available to suggest that they may be harmful. We’re still having to wait until the actual harm appears, and then try to do something about it.

MOYERS: Who’s in charge of the process now? LEMEN: The industry.

MOYERS: Regulating itself?

RICHARD LEMEN Ph.D., FORMER DEPUTY DIRECTOR, NIOSH: They’re in charge of doing that. The government is supposed to, but the industry has so much control through the lobbying efforts that they actually indeed do control it themselves.

NARRATION: To this day – almost 25 years after the Toxic Substances Control Act was enacted – only five types of chemicals, out of thousands, have been banned under the law.

INSTITUTE, WEST VIRGINIA

NARRATION: August 11, 1985. The accidental release of a toxic cloud from a Union Carbide plant in Institute, West Virginia sends 134 people to the hospital. It is only eight months after an explosion at a Union Carbide plant in Bhopal, India had killed some 2000 people – and injured 200,000 more.

REPORTER: When they told you it was a leak, what was the first thing that went through your mind?

MAN: India. Because you’re so helpless.

WOMAN: They didn’t know where it came from, they didn’t know what it was till two days later after it happened. You fumble and stumble and cause our lives to be turned upside down over things you misplaced – over 500 gallons of this mixture. Now I can see misplacing one or two gallons of gasoline around your house…

ROBERT KENNEDY, PRESIDENT, UNION CARBIDE: If we don’t make those chemicals, someone will. Someone will make those chemicals, and you know, you can wish the problems on somebody else. I had a dog once who overly aggressive and he bit a mailman once. And he missed a mailman about three times. And I was very upset about it. And I asked a vet finally if she thought that I could find a good home for that dog. And she said, Mr. Kennedy, don’t give your problem to somebody else. And I think I learned something by that. I don’t think we want to quit.

MAN IN AUDIENCE: When will you listen? I don’t want to hear your dog stories. We’re talking about people. And their lives and their homes and their families. You can have my job if you want it. Because by god, I can get another job. I can’t get another life.

NARRATION: Accidents were but one symptom of our co-existence with industrial chemicals.

In the late 1980’s, people began to agitate for the right to know more about the chemicals that they – and their children – were being exposed to.

WOMAN: I don’t think we should be afraid any more about talking about controls on the chemical industry. These are private companies -Carbide, DuPont, FMC, all of them – whose day to day decisions in those corporate board rooms are affecting our lives, our children’s lives, and the future generations.

MAN: What about cleaning up the industry? Stop the leaks, for Christ’ sake. Don’t kill me. Let’s do something.

NARRATION: In California, they did do something. In 1986, citizens themselves rounded up enough signatures to put the Safe Drinking Water and Toxic Enforcement Act – Proposition 65 – on the California ballot.

MEYERHOFF: With Prop 65, if you are a manufacturer of a chemical and you’re exposing my family to a health hazard in a consumer product, in the workplace, in the air and the water, you have to warn me, and that makes a big difference because the public then doesn’t buy the product and it shifts the burden to the company.

MOYERS: You were really turning the system of regulation upside-down.

MEYERHOFF: Yes. It turned the entire system on its head, and that’s why the chemical industry and agriculture and others in California fought the law so hard.

NARRATION: Once again, we have learned from the secret documents how industry planned to fight.

June 4, 1986 California Toxics Initiative.

“A campaign fund of $5 million dollars has been targeted, with a broad coalition of industry and agricultural interests having been formed to finance and manage the campaign.”

MOYERS: “A total of $150,000 is needed by June 25th for fund-raising, research, and advertising, an additional $650,000 payable during July, August, or September.”

MEYERHOFF: Well, I always knew there were resources against us. I actually was unaware of the amount. That actually surprises me that there was quite that high level of dollars, and that was a lot of money then, to oppose Prop 65.

NARRATION: But the industry had been caught short; its money came too late. On election day, California’s right-to-know proposition passed – overwhelmingly.

MEYERHOFF: What the voters were saying is that we don’t trust the Government to protect us any longer from chemicals that cause cancer or birth defects or other harm, give us the information, tell us when we are at risk, we’ll protect ourselves. That was the basic message. And if you fail to do that, then you, a chemical company or grower or others, can be fined up to $5,000 per day, per person that isn’t warned. Prop 65 put the fear of God in the chemical companies, and it had never been there before.

NARRATION: Afraid of aroused public opinion, the companies vowed never to be caught short again.

June 3, 1987 Board of Directors Meeting. Chemical Manufacturers Association. State Toxics Initiatives

“Development of a funding plan which would include an industry-wide ‘pledge’…”

MOYERS: …”pledge” of resources company-by-company, pre-authorization to commit the funds to individual state campaigns.” Does that surprise you?

SANDY BUCHANAN, EXECUTIVE DIRECTOR, OHIO CITIZEN ACTION: Well, it helps me understand why they were able to marshal their forces so quickly in Ohio and from so far across the country, the idea that they were ready for it and committed.

MOYERS: But you didn’t know about this?

BUCHANAN: No. I didn’t know about that until just now.

NARRATION: Sandy Buchanan heads Ohio Citizen Action, the group which took the lead in getting a right-to-know initiative on the Ohio ballot in 1992.

MOYERS: Though you didn’t know it at the time, I assume you were up against a lot of that money?

BUCHANAN: We were up against about at least 4.8 million of it.

MOYERS: 4.8 million.

BUCHANAN: That was the final spending on the actual ballot campaign.

MOYERS: By the industry.

BUCHANAN: By the industry in Ohio. They definitely spent more money than that, though, because at every stage of the process through the legislature and others, they brought us to court and they tried to challenge the legality of our petitions.

MOYERS: So the industry spent 4-point–

BUCHANAN: 4.8 million dollars on the ballot.

MOYERS: And how much did you spend in trying to pass it?

BUCHANAN: Oh, about 150,000.

MOYERS: I would say you were outspent.

BUCHANAN: About 50 to 1 or so, yeah.

NARRATION: For the companies, the dollars spent to defeat the initiative were insurance against the greater loss of being held accountable.

BUCHANAN: If they can’t be held liable, if the tools that citizens or workers can use to try to defend themselves are taken away, then you can protect the bottom line of a corporation.

MOYERS: It would cost them money if people knew.

BUCHANAN: It would absolutely cost them money.

NARRATION: No state right-to-know initiative has passed since 1986. And two years ago, industry persuaded Congress to roll back a major right-to know provision in the Clean Air Act.

TEST RESULTS

NARRATION: Today, an average of twenty new chemicals enter the marketplace every week. We don’t know much about them – and we don’t know what they might be doing to us.

Back at the Mt. Sinai School of Medicine, Dr. Michael McCally was ready to tell me if residues of the chemical revolution had been found in my blood.

MOYERS: So what’s the news?

DR. MICHAEL McCALLY, VICE-CHAIRMAN, PREVENTIVE MEDICINE, MT. SINAI SCHOOL OF MEDICINE: We tested for 150 different industrial chemicals, and you have 84 of those 150.

MOYERS: Wow. Eighty-four.

McCALLY: Eighty-four.

MOYERS: If you had tested me sixty years ago when I was six years old, would you have found those chemicals?

McCALLY: No. No. With one exception.

MOYERS: What’s that?

McCALLY: Lead.

MOYERS: Lead.

McCALLY: Lead. Lead’s been around — we’ve been — we’ve been poisoning ourselves with lead since, you know, practically the cave ages.

MOYERS: So 83 of these 84 chemicals you found in my blood are there because of the chemical revolution –

McCALLY: Yes.

MOYERS: — over the last sixty years.

McCALLY: That’s correct. That’s correct. And we didn’t know this until we looked, but suddenly we find out that the industry has put a bunch of chemicals in our body that, you know, are not good for us, and we didn’t have any say in that. That just happened.

MOYERS: What kind of chemicals?

McCALLY: In the PCB case, you have 31 different PCBs of this whole family of similar chemicals. They are all over the place. And it’s probably a function of where you lived. You lived in some locale where PCBs were in the environment, and you got them into you through the air you breathed. Some of them get down in groundwater. Some of them get coated on food. You didn’t get them sort of in one afternoon because you ate a poisoned apple.

MOYERS: And dioxins?

McCALLY: And dioxins, of all that we measured, you had 13, 13 different dioxins.

MOYERS: You tested for some pesticides.

McCALLY: Yes. The organophosphates — malathion is one we may have heard of because we’re spraying it here in New York because of mosquitoes.

MOYERS: I used to spray malathion on my house in Long — on my yard in Long Island.

McCALLY: We also measured organochlorine pesticides. The best known is DDT. DDT hasn’t been produced in this country for several decades.

MOYERS: Yes. So where would I have gotten that?

McCALLY: Did you ever, you know, watch them spray the trees when you were a little kid?

MOYERS: Young man.

McCALLY: A young man? Yes. Okay.

MOYERS: And I lived around places that had used it.

McCALLY: Well, that’s enough, because again, like PCBs, these are very persistent chemicals. They don’t — the body doesn’t metabolize them, doesn’t break them down into little pieces and get rid of them.

MOYERS: How do the results of my test compare with others around the country?

McCALLY: I wish we had more data. I wish I could give you a clear answer to that. The burdens that you carry are probably biologically less important than if you were, you know, a 21-year-old woman who was in her ninth week of pregnancy. And then the fact that you were circulating some DDT might really be important.

MOYERS: Have these chemicals been tested in terms of what happens when they are combined?

McCALLY: No. No. That is a complexity that we haven’t even looked at.

MOYERS: Have they been tested on vulnerable populations like children?

McCALLY: No. We are just beginning to do that science.

MOYERS: Is it fair to say from all of this that we are, as human beings, being unwittingly exposed to hundreds of toxic chemicals which have been tested enough just to know that they’re toxic, but not tested enough to know the risks?

McCALLY: That’s a fine summary of the current state of affairs. We know enough now to know that it doesn’t make a lot of sense to make chemicals that are carcinogenic and add them to our bodies and then argue about how much we are adding. It just isn’t a good idea. Particularly when there are perfectly acceptable alternatives, and if the industry chose, it could change our exposures dramatically by its own actions.

NARRATION: Three years ago – on the eve of Earth Day – the Chemical Manufacturers Association promised that its member companies would begin to voluntarily test one hundred chemicals a year at an estimated cost of 26 million dollars.

FRED WEBBER, PRESIDENT, CHEMICAL MANUFACTURERS ASSOCIATION: Our vision is that we will be highly valued by society for our leadership, for the benefits of our products and for the responsible and ethical way in which we conduct our business. It’s as simple as that.

NARRATION: Today, we are still waiting for the results of even one of those tests.

During those three years, the industry poured more than 33 million dollars into the election campaigns of friendly politicians.

NARRATION: As the secret documents reveal, the promise to test – voluntarily – was part of a strategy hatched almost a decade ago.

September 15, 1992:

“A general CMA policy on voluntary development of health, safety and environmental information will…potentially avert restrictive regulatory actions and legislative initiatives.”

MEYERHOFF: The idea of a chemical company voluntarily testing its product is not unlike efforts to voluntarily regulate their products. It is an attempt to pre-empt effective government. It is an attempt to try to stop the government from doing its job by doing half-baked measures and then claiming that we’re protecting the public.

DR. PHILIP LANDRIGAN, CHAIRMAN, PREVENTIVE MEDICINE, MT. SINAI SCHOOL OF MEDICINE: There are 80,000 different man-made chemicals that have been registered with the EPA for possible use in commerce. Of those 80,000, there are about 15,000 that are actually produced each year in major quantities, and of those 15,000, only about 43 percent have ever been properly tested to see whether or not they can cause injury to humans.

NARRATION: The industry’s own documents confirm just how little we know.

Meeting of the CMA Board of Directors. Pebble Beach. Report of Health Effects Committee.

“The chemical industry has contended that while a few substances pose a real risk to human health when sufficient exposure occurs, the vast majority of chemicals do not pose any substantial threat to health. However, the problem is, very little data exists to broadly respond to the public’s perception and the charges of our opponents.”

NARRATION: That is worth repeating. “The problem is, very little data exists.”

In other words, the industry itself acknowledged it could not prove the majority of chemicals safe.

LAKE CHARLES, LOUISIANA

NARRATION: Lake Charles, Louisiana. In the spring of 1989, the family of Dan Ross gathered to celebrate their daughter’s graduation from college.

ELAINE ROSS: He was always the kind of man that wore denim. Denim shirts, denim pants. In fact, he got downright indignant if we tried to make him dress up. We thought that was what was wrong with him. He’d complained about having a headache that day, and Robin told him – that’s our daughter. She said, Daddy, you’re not wearing that to my graduation. You’re wearing a suit. We assumed that the look on his face was that he was mad at all of us and was gonna let us remember it forever, you know. And we laughed at him and teased him about it. But afterward, the headache didn’t go away.

NARRATION: Several days later, a CAT scan revealed brain cancer. In the last words he was able to speak, Dan Ross told his wife, “Mama, they killed me.”

ROSS: You start watching him die one piece at a time, you know. It’s like, okay, he’s blind today, but he can still hear, he can still swallow if I put something in his mouth. But he lost the use of one of his arms, and then next day it would be the other arm, the next day it would be one leg. And then he couldn’t hear anymore. The hardest part was when he couldn’t speak anymore.

NARRATION: On October 9, 1990, twenty-three years to the day after he started working at Conoco, Dan Ross died. He was 46 years old.

ROSS: They hurt somebody that meant more to me than my whole life. I would have gladly taken his place to die. Gladly.

NARRATION: Half a century into the chemical revolution, there is a lot we don’t know about the tens of thousands of chemicals all around us.

What we do know is that breast cancer has risen steadily over the last four decades. Forty thousand women will die of it in this year alone.

We do know brain cancer among children is up by 26 per cent. We know testicular cancer among older teenage boys has almost doubled, that infertility among young adults is up, and so are learning disabilities in children.

We don’t know why.

But by the industry’s own admission, very little data exists to prove chemicals safe.

So, we are flying blind. Except the laboratory mice in this vast chemical experiment are the children.

They have no idea what’s happening to them. And neither do we.

PANEL DISCUSSION

MOYERS: Now we want to discuss some of the public policy issues raised by what we’ve seen.

With me are Terry Yosie, Vice-President of the American Chemistry Council; Ted Voorhees, partner in the law firm of Covington & Burling – he represents the Chemical Trade Association in the Ross case; Ken Cook, President of the Environmental Working group — as a matter of disclosure, the foundation I serve made a small grant to Mr. Cook’s organization a few years ago, but I didn’t meet him until three weeks ago — and Dr. Phil Landrigan, a pediatrician and chairman of preventative medicine at Mount Sinai School of Medicine.

Mr. Yosie, thank you very much for coming.

TERRY YOSIE: Thank you.

MOYERS: Given what we’ve just seen, how can the public rely on what the chemical industry says about the safety of synthetic chemicals?

YOSIE: Thank you, Mr. Moyers. If I were a member of the viewing audience tonight, I would be very troubled and anguished if I thought that the information presented during the proceeding 90 minutes represented a complete and accurate account of the story. It does not. For nearly two years, this program has been in preparation. At no time during that two year period have representatives of this program contacted our industry, asked us for information, or provided an opportunity for us to appear on the 90-minute segment.

We believe that it is a sad day in American journalism when two sides of the story can’t be told, when accuracy and balance are not featured in the broadcast. It’s our intention in the limited about of time that we have available this evening to correct some of the errors that we found in the broadcast, but also to present a more complete picture of who this industry does and what it represents and the benefit it delivers for the American people.

How can– turning to your question Mr. Moyers– how can the American people be reassured that the products developed are safe for the intended uses? We test our products and we report that information to the government. There are 9,000 chemical products on the marketplace today. They have been researched, they have been tested, and that information has been disclosed. We do not do this information alone. We work with some of the finest universities in the United States: people at Harvard, the University of California system, the University of Massachusetts– independent researchers with world-class reputations.

We have a major partnership with one of this nation’s leading environmental groups, Environmental Defense, and through that partnership we are disclosing information on those test results no matter what they show. So I believe this commitment to openness and transparency, to working together to identify information needs and to disclose this to the public is to pass the greater confidence in the products we make.

MOYERS: Mr. Cook, do you want to talk about that?

KEN COOK: Well, it’s interesting that you raised the question of testing. As I was struck by so many images in this program, one of the images was that of the x-rays of these vinyl workers who you had in your industry, medical doctors examining without telling them why they were examining them. Their fingers dissolving and this new program you’re describing, the symbol of it is two hands holding a globe. I don’t think I will ever be able to look at the logo for your program without thinking of those vinyl workers and their dissolving finger bones.

As for testing, one of the things that was striking about Bill’s results as I was thinking about it, was just how little is known about the products of your industry showing up in people. Do you, for all your testing you’re saying is being done, do you have any idea how many of the products of your industry, all your companies– it’s a good bit more than 9000– do you know how many show up in people? Have you even tested for that?

YOSIE: Let us respond to some of the issues you’re raising.

MOYERS: You don’t want to answer?

COOK: So you’re testing?

YOSIE: I want to respond to the issues that…

MOYERS: Before you do…

YOSIE: I think the viewers deserve our correction of some statements.

MOYERS: Well we’ll turn to it in just one minute, but how thoroughly are these chemicals tested before they come on to the market?

YOSIE: They are tested using the best scientific methods available, and they are tested not only for their potential hazard, but when we test a product, when we submit that information to the government, we are using standards set by our government, but also international standards. We are applying the best laboratory practices that have been defined by the scientific community.

We don’t do this work in isolation, and when we develop a product, we have margins of safety so that whatever potential effects there may be, we develop those products so that they ensure safety many times below where there could ever be an effect. Subsequent legislation has ratified that approach that we have taken for many years.

COOK: But this is legislation that you have opposed. I mean, your own documents show– whether it’s the clean air act, the clean water act, the safe drinking water act– straight on through, you can read the documents now for the first time that you have never made public before, and it’s quite clear that every time there’s an attempt to tighten regulation on your industry to protect citizens, communities from air pollution, water pollution, your own documents show how you have opposed that.

MOYERS: Let me bring Mr. Voorhees in on this.

TED VOORHEES: Thank you, and let me say that I have met Mrs. Ross, and I have a tremendous amount of sympathy for her situation having lost her husband to brain cancer. At a human level I have sympathy, but no amount of sympathy can justify putting on a program that presents an incomplete, slanted, and essentially misleading characterization of what happened with vinyl chloride.

And to take Ken’s example of the hands, as the first of a couple of examples let me give, the show tells the viewer that this hand problem appeared in the mid 1960’s, and that it was treated as confidential and secret by the industry. What the show doesn’t state is that as soon as that problem was found by B.F. Goodrich company, the doctor who found that problem in 1967, published his findings in the Journal of the American Medical Association, which is probably one of the most widely read professional articles read by doctors, and in that article on the hand problem, Dr. Creech included the very same x-ray images which you showed on your program as if they had been hidden and kept secret from people.

MOYERS: Did that document say that it was linked to the exposure of vinyl chloride?

VOORHEES: It absolutely did, that was the whole subject of the article.

MOYERS: Why didn’t the company tell Bernie Skaggs?

VOORHEES: Bernie Skaggs’ doctor knew about that because he read it in the Journal of the American Medical Association.

MOYERS: But why didn’t the company tell him?

VOORHEES: The company was telling his doctor — the person who would know and who would be able to react to something like that is a professional who would be able to see the relationship.

MOYERS: I believe the documents show that the company did not tell his doctor.

VOORHEES: Well, they published the study of the hand problem in the Journal of the American Medical Association in 1967.

MOYERS: So was the doctor expected to just come across that in random reading? Why didn’t the company tell Bernie Skaggs directly? He worked for the company, Mr. Voorhees. Why didn’t they tell him?

VOORHEES: The Journal of the American Medical Association, JAMA, is not random reading. It’s probably the most widely read professional journal…

MOYERS: Sir, you’re not answering the question. Why didn’t the company tell its employees?

VOORHEES: I don’t know that they didn’t tell Bernie Skaggs.

MOYERS: The documents suggest they didn’t.

VOORHEES: The B.F. Goodrich company had a doctor at the plant. He was the author of this article in JAMA and he would have, as workers came into see him, he would have explained to them what their problem was and I would expect that would happen.

MOYERS: Was Bernie Skaggs lying to me when he said the company didn’t tell him?

VOORHEES: I am certainly not going to accuse him of lying, but what I’m saying is that the doctor at his plant published his findings immediately in the Journal of the American Medical Association and my point is, the program has suggested to your viewer that this was an issue that was kept in secret. Far from keeping it in secret, it was published in the most widely read journal, and the x-rays that were supposedly kept secret were a part of that journal article.

YOSIE: 40 years ago is a very long time. 40 years ago there wasn’t an Environmental Protection Agency. 40 years ago there wasn’t a clean air act. I don’t believe the viewers of this program are interested so much in what happened 40 years ago. I believe they are vitally interested in their own personal health and wellbeing today. They want to know that if the products that we develop and market are safe for their intended uses. They want to know if the products that they’re using in their homes are going to benefit them. and I believe the answer is…

MOYERS: Those are the questions that I sent you a month ago and said, “let’s talk about these policy issues.”

YOSIE: Those are the questions I absolutely want to address.

MOYERS: What about that?

LANDRIGAN: I think that’s really the central question, Bill, Terry.

Today there are many thousands of chemicals on the market. There are a number of chemicals that are registered with the EPA for commercial use is not 9,000; it’s over 80,000. There’s about 3,800 which are called “high production volume chemicals.” A couple of years ago, the Environmental Defense Fund, the same organization with which the chemical manufacturers are partnered, did an analysis of those high production volume chemicals to see what fraction has been tested. Now, to be sure, when the EDF were seeking information on how many were tested, they had to go to the open literature. They obviously didn’t have access to company documents.

In the open literature they found that only 43%, less than half of these chemicals had ever been tested for toxicity to humans. When they looked more deeply, when they asked more sophisticated questions, for example, what fraction of these chemicals has been tested for their effects on children’s health?

What fraction have been tested for the effects on the developing brain, the developing immune system, the developing reproductive organs, the endocrine system of babies? You’re down very close to single digits. Around 8% or 10% of chemicals on the market have ever been tested for these effects.

So I think that it has to be said here today that the toxic substances control act is a well-intentioned piece of legislation, but in its execution, it has mostly been a failure. It is just not doing an adequate job of protecting the American public.

YOSIE: There are not 75,000 products on the market today. There are 9,000.

LANDRIGAN: No, there are not 75,000 chemicals on the market, but there are that many chemicals registered with the EPA for commercial use. And of the 38,000 high production volume chemicals, fewer than half, less than half have been tested for their toxicity.

YOSIE: Mr. Moyers, you’ve had your own body tested and this was shown to the viewers. What was not shown to the viewers, that the products that we make probably saved your life. From what I read in the newspapers, you had a very serious heart operation at about 1994. You had a blockage in an artery leading to your heart. When your doctors discovered this problem and advised you and provided the professional counseling and expertise that made it possible for you to recover to the robust man that you are today, they were using our products. They diagnosed…

MOYERS: Are you sorry about that now? I mean, don’t you wish…?

(laughs)

YOSIE: I am delighted that you’re here. You look very healthy. They diagnosed your problem using technologies that we helped develop. When they operated on you, they used surgical instruments that we helped develop. To ensure that you did not contract a subsequent infection post operation, you were given medicines.

In addition, you were probably given medication afterwards to ensure your continuing return to health. I believe that your state of well-being today was directly dependent on the benefits that our industry provided to you and to every American.

MOYERS: I don’t challenge that, and I didn’t challenge that in our reporting. I do not challenge that.

YOSIE: You do not challenge that but you didn’t report it either.

MOYERS: You just said it. I told you a month ago we wanted you to come on and say what you wanted to say and you just did. But here is the issue that I think that Dr. Landrigan is raising, that my own body burden test is raising, Dr. McCally said to me, I said to him, “Should I be worried?”

He said, “At your age, 66, I don’t think so. But if you were a 21-year-old pregnant woman, it might be a different story.” And he said, “We do not know what this combination of chemicals, what effect it’s having on our health.” This is a new phenomenon. He said, “Your grandfather would not have had this.” This is a new phenomenon. And what I think I was asking in the broadcast, and what I hear Dr. Landrigan asking is, how do we find out what this combination of chemicals is doing in our body? Particularly to children. Are children the most vulnerable?

LANDRIGAN: Children…

YOSIE: Dr. McCally erred in what he told you. He said that 60 years ago the only compound that you would have in your body was lead. 60 years ago, American cities looked like an industrial wasteland. They looked like what Russia or China or Eastern Europe looks like today. 60 years ago, there were no pollution controls on industry or any other major products. 60 years ago, the area that I come from, Western Pennsylvania, people had to wear two shirts to go to work. One to wear outside, one to wear inside.

MOYERS: “Better living through chemistry.” I acknowledge that. We all acknowledge that.

COOK: I think as an environmentalist, I’ll defend your industry. But the thing that surprises me…

YOSIE: Thank you, I’ll take that compliment.

COOK: Let’s go back to the vinyl story. Again, for the first time now it are read tens of thousands of pages of documents that you never made public. If they so strongly defend your position, you never made them public. Now that they are public, one of the striking things about me is how you’re hiding your light under a bushel basket when it comes to inventiveness. Those documents clearly show again and again and again that your industry worried that if vinyl chloride standards were tightened, it would be the end of the industry. Companies would go bankrupt. They say this. They could not continue to operate.

None of them did go bankrupt when it went from 500 parts per million down to one. They all did fine. In fact, they made money. And I think what I respond to you when you make that point is, yes, there are many ways which chemicals make a difference in our lives. But there are also ways in which we can find safer alternatives. And in most cases, the fastest was to those alternatives is to put pressure on the industry beyond what you feel now to move you in that direction. You don’t go rapidly on your own, and that’s been shown time and again.

YOSIE: Three months ago…

VOORHEES: Can I respond to that?

MOYERS: Sure.

VOORHEES: Since he referred to the vinyl chloride story in the litigation, and I would say it would be fair for the viewer to think that the program was about concealment and secrecy. And what the viewer was not shown was that in each of the episodes that you portrayed in the program where you would show a document that says confidential or secret, what you failed to do was to show that shortly after that document was prepared, a study was published. For example, I’ll just give you few examples.

The Viola study in 1970, the first Italian researcher who found some signs of carcinogenity in laboratory animal experiments, and you showed a document that said this could potential be problematic and should be confidential. What you didn’t say is that Viola’s study on that subject was published in 1970, the next year after the confidential document. So the point is, that when we research was being done on these very subjects, research on… initially on laboratory animals, that the research was published and there was not one reference in that whole program to the published articles that followed each of these incidents that are referred to in the program. To me that’s a very misleading presentation.

YOSIE: Three months ago…

MOYERS: Let me just answer Mr. Voorhees. For one thing, it was because that Dr. Viola was going to publish his findings that the chemical association meeting took place to discuss what to do about it. And I was really astonished, Mr. Voorhees, in the materials you sent us before the broadcast which we examined thoroughly. You were very selective in what you gave us. You did not include in there the documents that show how the industry did not want to talk about it, Dr. Maltoni’s research, and made plans not to disclose that to NIOSH, even though NIOSH, the government agency, had asked for those… that information to be volunteered, and your industry did not do that. The documents make it clear that they did not talk about Dr. Maltoni’s argument. But that’s the past.

I would love to come back to this issue. Look, the people out there watching this thing, you know, we know our lives are better because of chemistry. But we also know that pediatricians and physicians like Dr. Landrigan are saying, we don’t know what this new combination is doing to us. So what is the question? What are the issues?

LANDRIGAN: I that’s the… excuse me, Terry. I think the issue, Bill, is that this is not something of the past. Many of the chemicals, for example, that were tested last week in that CDC report that was released to the nation on the 21st of March, are chemicals that reside…

MOYERS: That was the center for disease control, right?

LANDRIGAN: The center for disease control in Atlanta, that’s right.

Many of the chemicals which they tested, for example the pesticide products, are relatively short-lived chemicals. Those are chemicals, when they get into the body of a child, only stay there for a matter of weeks or at most a month or two, and then they’re gone.

So the chemicals that were measured by CDC in Americans are chemicals where the exposures are taking place today. And in response to your question, it’s absolutely true that children are the most vulnerable among us to those chemicals, and kids are vulnerable for two reasons. First of all, they take more chemicals into their body. They breathe more air. They drink more water. They eat more food pound for pound. So they take more chemicals into their body that are present in the air, on their food, in their water. And of course, kids play on the floor. They drop a lollipop on the rug. If there’s pesticide on that rug, they pick up the lollipop, they put the lollipop into their mouths and the pesticide gets in.

Then on top of that, besides being more heavily exposed, kids are biologically more vulnerable. I mean, anybody who has seen a little child– I’ve got a grandson who is just a bit over a year old– anybody who’s got a little child knows how precious and how vulnerable they are. Their brains are growing and developing. If a chemical like lead, like a pesticide, like PCB’s, like organic mercury gets into the brain of a baby during those early months of development, the consequences can be life-long.

YOSIE: Three months ago, the Department of Health and Human Services… Please, Bill, please, be fair.

LANDRIGAN: What really troubles me here is we don’t know… we simply do not know the long-term consequences of exposures in early life. As a pediatrician, as a parent, as a grandparent…

MOYERS: But what’s the public’s policy you’d like to see come out of this, and I would like to hear Terry Yosie say why the industry wouldn’t support that public policy?

LANDRIGAN: I think we need four things, four things only.

Number one, we need thorough independent testing of chemicals, including testing that looks at pediatric effects.

YOSIE: That’s underway.

LANDRIGAN: Number two, and it needs to be independent of the industry.

YOSIE: Colleagues… Mr. Cook’s colleagues in the environmental community are working directly with us. We just participated in a process with environmental groups and others to test compounds for their impact on children.

LANDRIGAN: Well, that’s… it just leaves…

YOSIE: There is an agreement in place to do just that.

LANDRIGAN: I’m glad. I noticed in the show itself that of promises were made, the results haven’t yet appeared. But the second thing that needs to be done is that we need to continue the nationwide testing of chemicals in the bloodstream of Americans that CDC has started. CDC, I understand…

YOSIE: We support that objective.

LANDRIGAN: And that’s good, that’s good.

YOSIE: We think the CDC report, which by the way, used technology that we helped develop. Those analytical methods that were used in your body and used on the recent CDC report are an outgrowth of our commitment to science to improve better analytical detection techniques. And so we support CDC’s continued efforts to learn more about the health status of the American people.

LANDRIGAN: Excellent. Number three, I think we need to work together. And this might actually be an area where the chemical industry and the environmental community and the academic community can work together. This is to support a national right-to-know initiative. For this nation, we ought to have the national equivalent of the Proposition 65 law that they have in California. Everybody in this country ought to be able to get good, accurate, unbiased information on every product they buy in the stores.

And fourthly, on the final need that I think we have to have in this country, is we need to have a more efficient, more effective process than we do today to get toxic chemicals off the market and to replace them with safer chemicals.

That’s what America’s kids need.

YOSIE: Two comments: One is, Mr. Landrigan, Dr. Landrigan, does raise the issue of what is the health status of children. Three months ago the Department of Health and Human Services, which includes the Center for Disease Control, issued a report. Let me read you a sentence in the very first paragraph of that report: “We’ve made life better for our children.” The Department of Health and Human Services, like the CDC, looks at the broad spectrum of issues that could potentially effect children’s health. And there is some very good news to report.

There are record child immunization rates. There’s a decline in youth drug use and smoking. There is a decline in teenaged mothers giving birth. There’s a decline in infant mortality. But even beyond children, cancer rates are down.

LANDRIGAN: Cancer death rates are down, cancer incidence rates are up, Terry.

YOSIE: But that’s an artifact of better reporting.

LANDRIGAN: No, it’s not.

YOSIE: Life expectancy rates in this country. We are living better and healthier, not only but because of the products we make but because people are being more sensible in terms of how they live and how they behave.

LANDRIGAN: The facts don’t support… some of what you’re saying is true, but it’s very selective.

YOSIE: I’m quoting to the CDC, Phil.

LANDRIGAN: You’re quoting part of a 30-page CDC report. Cancer death rates are down, but the number of new cases of cancer in children is up. I don’t know why they’re up, but since 1972, which is when we began to keep national records in this country, we have experienced a 42%… 41% increase in the incidents of brain cancer, the number of cases of brain cancer per thousand children. That is not a reporting artifact. We weren’t missing 40% of brain cancers 30 years ago when I started my pediatric career. We just weren’t. In young men 15-30, there has been a 68% increase in the incidents of testicular cancer.

Now, you’re quite right, American children today live longer. They live longer because we have conquered most of the infectious diseases in this country. But the rates of asthma have doubled.

YOSIE: What are the principal health risks that children today. To some extent they do come from environmental factors, but domestic violence…

LANDRIGAN: Oh, the principal cause of hospitalization of American children is…

YOSIE: …lack of access to healthcare, a number of other factors…

MOYERS: Are those not involuntary, but chemicals in our food and chemicals in our toys are not something that people ask for, they just happen, as you said I think, or McCally said in the interview, suddenly we’ve got all these chemicals in our body.

VOORHEES: These are products that have been very carefully scrutinized by the scientific community, by government agencies, and as a result…

YOSIE: Let me make one point if I may, one point, if I may.

LANDRIGAN: Why is there…

YOSIE: Phil made the point that we need to take the compounds off the market. That has been tried in many countries and disaster has resulted. The nation of Peru stopped chlorinating its water supply. Chlorine is one of our major products. What happened after that event? A cholera epidemic broke out and over 10,000 people in Peru and Latin America lost their life.

LANDRIGAN: And in this country we took tetraethyl lead out of gasoline American’s blood levels have declined 99%.

YOSIE: And proponents of removing chlorine are saying that ought to be done in this country. There are ten to 25 million people perishing because of a lack of a drinking water supply.

LANDRIGAN: In this country, over the vigorous objection of the Ethyl Corporation, we removed tetraethyl lead from gasoline. The average blood lead level in American children has declined by 90%, and the average IQ of American babies has increased by three points.

YOSIE: You and I were on the same side of that debate when I served as the official of the environmental protection agency.

LANDRIGAN: When you were at EPA.

YOSIE: When I was at EPA.

COOK: Yeah, but the companies you represent…

YOSIE: You and I were on the same side of that debate, and we still are.

MOYERS: What was that, Ken?

COOK: The companies you represent weren’t, and that’s the point. If you look at these documents which we now have– and let me just put in a plug, ewg.org, you can read 40,000 pages of them going back to 1945 now.

YOSIE: And we will correct those in abouttradesecrets.org.

MOYERS: What’s your web site?

YOSIE: Everybody’s got a web site. Ours is abouttradesecrets– that’s one word– abouttradesecrets.org.

MOYERS: And yours is…

LANDRIGAN: Childenvironment.org.

MOYERS: Covington & Burling?

VOORHEES: Well, we have a law firm web site, but I’m not sure people…

MOYERS: (laughs) Ours is pbs.org.

It’s only fair that you get a chance to answer this question, because as I’ve said to you, investigative journalism is not a collaboration between the journalist and the subject, and I did lay out there, Sherry Jones and I laid out, the record of the industry and opposing right to no initiative.

Why has, in every case that I can find, why has your industry opposed citizens effort to use the right to know initiative and every right to know efforts?

YOSIE: I think you have your facts wrong.

MOYERS: Tennessee, Hawaii, California, Ohio, Illinois, Massachusetts.

YOSIE: We supported the amendment, the Superfund statute, in 1986, creating the Toxic Release Inventory. We supported in 1990, the amendment of the Clean Air Act so that information would be made available to communities about chemicals that were being used in their neighborhoods. We supported, with Environmental Defense, the complete and total disclosure of any testing results going on with our current agreement with them. We had been a strong supporter of right to know, and here’s why.

We have had over the last dozen years, a program that has instituted over 300 community advisory panels wherever this industry is located in this country. We have learned a great deal from listening to communities where we play a major part. One of the greatest testimonials that you hear about this industry is from people who live near it, because they have seen the very direct health and environmental progress and the emissions reductions that result from our industry. When they have a question about plant safety or noise levels or environmental emissions, they have direct access to the plant manager. They have access to go inside the plant gates and see what’s going on.

COOK: I’ve talked to an awful lot of people…

YOSIE: That is why we have 60% decline in emissions over the last decade, the best of any American industry.

COOK: Well, you almost make it sound as if you volunteered to do that, and you did not.

YOSIE: We supported those measures.

COOK: Listen, what you selectively may have supported, everyone can now read what decisions you made and how you made them to take a stand on clean air and clean water and drinking water, and it’s… I respectfully disagree, it is not as you describe it. No, what these communities are often left with is just asking a plant manager, “Can you tell us?” No authority, no power under law to actually compel that information to come forward. And to get back to the testing point, I just want to, because there would be some confusion…

MOYERS: We have about 45 seconds.

COOK: There will be some confusion out there. If these chemicals are so well tested, then how come you had to come forward with a program just two years ago to voluntarily test the most widely used ones if they were tested? Some of them have been used for decades.

YOSIE: Because we’re a responsible industry. Because we’re always seeking answers to question. We’re a science-based…

COOK: About 40 years late.

YOSIE: We’re a science-based industry, and by nature we are asking these questions. There are a million men and women who work in this industry who apply chemistry to make a variety of products and services. I’m very proud to represent them here tonight, and as we close this broadcast, I want to thank them for the contribution they’ve made to society. They’ve made America a better, healthier and safer society. And to the viewing audience, I want to say that we are committed to continuing to improve our environmental health and safety performance. I think you all know that what happened 40 years ago is no reflection of the kind of industry that we represent today.

MOYERS: We’re going to let you have the last word.

YOSIE: Thank you.

MOYERS: Thank you very much, Terry Yosie, thank you, Mr. Voorhees, thank you Dr. Landrigan, thank you Ken Cook.

I’m Bill Moyers. Thanks for watching. Good night.

Read Full Post »

The Lake Effect by Nancy Nichols

By the time the PCB problem was isolated in January 1976, the Illinois Environmental Protection Agency believed that Outboard Marine was delivering approximately nine to ten tons of PCBs to the harbor each day. The PCB content of the sludge at the bottom of the harbor ranged from 240,000 to 500,000 parts per million depending on when and where the sample was taken. That means that either one in two or one in four grains of sand or silt at the bottom of the harbor was not actually sand or silt, but was a PCB instead. page 43

Waukegan would take its turn on the national stage two years later, in 1984,when a U.S. Environmental Protection official, Rita Lavelle, was accused of secretly meeting with lakefront polluters in an effort to strike a cleanup deal that heavily favored industry… In the aftermath of the scandal, the full extent of Waukegan’s chemical contamination was revealed… Eventually, three separate Superfund sites, named after the 1980 federal legislation that allocated funds to clean them up, were designated in Waukegan. Two of the sites are adjacent to the lake… In addition, more than a dozen other sites form what federal and state regulators call an expanded study area, which stretches along the lakefront from one end of town to the other. These smaller sites contain the waste products from a tannery, a steel company, a paint factory, a pharmaceutical company, and a scrap yard. Together these sites contain not just PCBs, but an alphabet soup of pollutants. “Just about every chemical we know to be dangerous to human health is in one of those sites,” Says Margaret Quinn, a professor at the University of Massachusetts, Lowell, who specializes in human exposure assessment. In addition to PCBs, these chemicals include benzene and other volatile organic compounds, arsenic. lead, asbestos, polycyclic aromatic hydrocarbons (PAHs), dioxins, vinyl chloride, and ammonia. Various chemicals among these have been associated with reproductive diseases, learning and attention deficits in children, birth defects, immune system deficiencies, and some forms of cancer.

Was there a relationship between my sister’s cancer and the toxins of our childhood? My sister certainly thought so. And many other people have suspected, often correctly, that elements in their environment have had an effect on their health. Yet because of the long time it takes for a cancer to develop and because of relative mobility of our lives today, it can be challenging to establish a casual link between a disease and its origin.

pages 5 -6

“Ovaries are approximately three centimeters long by one and one-half centimeters wide by one centimeter thick,” writes Ethel Sloan in, “The Biology of Women.”… Whichever edition you consult will tell you that the ovary is about the size of an almond and that it produces the female hormone estrogen. During the monthly menstrual cycle, each ovary forces an egg through a wall of tissue and afterward repairs that rupture in a process called ovulation. “The ovary is no beauty,” writes Natalie Angier in “Woman: An Intimate Geography, “It is scarred and pitted, for each cycle of ovulation leaves behind a blemish where an egg follicle has been emptied of its contents. The older the woman, the more scarred her ovaries will be. It is this continual bursting and repairing–part and parcel of the ovarian life cycle–that makes the ovary vulnerable to cancer.

Scientists have long theorized that as cells multiply each month to repair the breach in the ovarian wall, more opportunities are created for mistakes in the DNA copying process, which in turn increases the chances of a malignant mutation. More ovulations, in other words, mean more chances for mistakes.

Risk factors for the disease therefore include never giving your ovaries a break by being pregnant or having a child. The other risk factor is having a close relative with the disease. That would be my sister, of course, and that would bring our story back home….

Doctors at this hospital and elsewhere have long speculated that there were significant environmental factors associated with ovarian cancer. The vagina provides a runway to the ovaries not simply for sperm but for many other substances as well. Significantly, women who have their tubes tied experience a lower rate of ovarian cancer than those who do not. Some have theorized that this may be because the pathways to the ovaries has been blocked, keeping outside agents at bay.

For example, some researchers have found a link between talcum powder and ovarian cancer–though several other studies have produced conflicting results. Some early forms of talcum may have contained asbestos and thus given researchers their positive findings. Indeed, at least one retrospective study found a much higher disease rate among women who used talc prior to 1960 than those who used is after–giving at least some credence to the idea that the use of asbestos-laden talc increases a woman’s risk of ovarian cancer.

My sister speculated that asbestos had contributed to her illness. A group of naturally occurring fibrous materials that are fire-resistant, asbestos has been thought to cause adverse health effects since the first century. Yet, as writer Paul Brodeur tells us in his book on asbestos, Outrageous Misconduct, its role in causing the disease asbestosis, a noncancerous condition in which the lungs scar so badly that they won’t expand and contract properly, was not well established in medical literature until the 1970s.

In the years before my sister died, when I was an editor for the Harvard Business Review, I worked on a piece written by Bill Sells, the man who had run the Johns-Manville plants in Waukegan in the early 1970s–a time when deaths from asbestosis and other asbestos-related diseases were beginning to occur in the workforce at an alarming rate. After noting that his job included the unenviable task of visiting his sick and dying employees at the local hospital, he offered this description of his first visit to the factory: “The plant lay at the back of a sprawling complex built in the 1920s. Its view of Lake Michigan was obscured by a landfill several stories high. A road wound through this mountain of asbestos-laden scrap, and as I drove through it for the first time I stopped to watch a bulldozer crush a 36-inch sewer pipe. A cloud of dust swirled around my car.” Inside the plant, he said, he found “asbestos-laden dust coating almost every visible surface.”

An EPA official charged with overseeing the cleanup of the Johns-Manville plant, Brad Bradley, has a similar recollection. Standing at the edge of the 350-acre Superfund site that overlooks Lake Michigan, Bradley recalled his first visit there in 1982. He remembers asking an asbestos expert where he thought they would find the fibers. “I think they are everywhere,” said the expert. Indeed, virtually anywhere on the site that Bradley scuffed the ground with his boot, he found the telltale fibers.

People are more likely to connect the fiber with asbestosis than with ovarian cancer. However, a thirty-year study of nearly two thousand women who worked with asbestos while manufacturing gas masks during World War II showed these women to be seven times more likely to die from ovarian cancer than a control group. My sister’s medical history seems to tell a different story, though, and the link between asbestos and ovarian cancer in general does not appear to be a strong one. The ovarian cancer specialist I saw at the clinic was quick to point out that my sister’s record indicated that her cancer was preceded by endometriosis.

The phrase “painful periods” does not begin to describe the torture that my mother and sister endured during menstruation. White and sweating, doubled over with pain, they retreated to the bed or the couch until the pain and the bleeding passed. When I recounted my mother’s experience, the ovarian cancer specialist suggests that my mother also likely suffered from endometriosis.

Endometriosis is a once rare disease that is now common. When the disease was first named and discovered in 1921 by a New York physician, there were only twenty reports of the illness in the medical literature. Today, the National Institutes of Health estimates that roughly 5.5 million women suffer from the disease in the United States, and as many as 89 million women may have it worldwide. An exact number is hard to come by, since the disease can only properly be diagnosed during surgery. Still, about one-third of women of childbearing age suffer some symptoms–including pelvic pain and infertility–and in the United States at least, the average age of onset has been declining…

Endometriosis is a complex condition, and no one is certain what causes it. Some scientists believe it is an immune system disorder. Others believe that women with endometriosis lack the ability to shed cells that have migrated and are growing where they should not be. Other scientists have focused on a genetic component of the disease since it can run in families. A woman with a sister or mother with endometriosis, for example, is three to seven times more likely to get the disease.

The mechanisms of endometriosis are not that different from those that create cancer: they involve cell proliferation, the migration of cells, and a change in their cellular nature. Endometriosis grows unchecked and invades surrounding tissues, and the body’s immune system fails to rid itself of the misplaced lesions. In the same way, the body fails to rid itself of cancerous lesions.

It is often but not always the case that the kind of cancer my sister suffered from, ovarian clear-cell adenocarcinoma, is preceded by endometriosis, and many believe that there is a relationship between the two diseases. Some scientists believe that endometriosis–in certain cases–is a kind of precancerous condition, and others believe that the two diseases spring forth in unison. Other experts theorize that the endometrial cells themselves drive the proliferation of cancer once it has started by producing their own estrogen. Each lesion is capable of increasing the local production of estrogen, so that once the disease takes hold it is capable of feeding itself.

In my sister’s case, cancerous growths arose within her endometrial lesions. Whatever the exact mechanism of disease development, women with the type of ovarian cancer that my sister suffered from have higher rates of endometriosis that the general female population. In one study, about 70 percent of the women with clear-cell ovarian cancer also had endometriosis.

Scientists have long suspected that chemicals of the type found in Waukegan–dioxins, PCBs, and polycyclic aromatic hydrocarbons (PAHs)–play a role in human endometriosis.

pages 75 – 81

Carson died in 1964, but her work and her life serve as a warning to everyone who struggles with cancer. “As we pour millions into research and invest all our hopes in vast programs to find cures for established cases of cancer,” she wrote, “we are neglecting the golden opportunity to prevent, even while we seek to cure.”

Carson’s favorite quote, from Abraham Lincoln, can be found snuggled into her almost daily letters to Freeman, where she explains what keeps her going through her treatments and on to finish her groundbreaking book. It reads: “To sin by silence when they should protest, makes cowards of men.”

page 122

Read Full Post »

New battlefront for petrochemical industry: benzene and childhood leukemia by Kristen Lombardi for The Center For Public Integrity

ATHENS, Georgia — It was December 29, 1998, six years after Jill McElheney and her family had moved next to a cluster of 12 petroleum storage tanks. Jill was escorting her son Jarrett, then 4, to the doctor again. He had spent the day slumped in a stroller, looking so pale and fatigued that a stranger stopped her to ask if he was all right.

It was an encounter Jill couldn’t shake. For the previous three months, she had noticed her once-energetic preschooler deteriorating. He complained of pain in his knee, which grew excruciating. It migrated to his shoulder and then his leg. His shins swelled, as did his temples. At night, Jarrett awoke drenched in sweat, screaming from spasms. Jill took him to a pediatrician and an infectious-disease specialist. A rheumatologist diagnosed him with anemia.

Now, as Jarrett lay listless, Jill found herself back at the pediatrician’s office. Tests confirmed a blood count so low that she was instructed to get him to an emergency room immediately. Within hours she was at a hospital in Atlanta, some 65 miles from her home in Athens, watching nurses rush in and out of Jarrett’s room. Doctors identified a common form of childhood leukemia. “I heard the words,” Jill recalled, “and I only knew the bald heads and the sadness.”

In the waiting room, family members heard more unsettling news: A neighbor’s child also had developed leukemia.

Days later, Jarrett’s doctor penned a letter to federal environmental regulators about the two cancer patients, highlighting their “close proximity” to Southeast Terminals, a group of 10,000-gallon tanks containing gasoline, diesel and fuel oil.

“Could you please investigate,” the doctor wrote, “whether high levels of chemicals could have contaminated the water, possibly contributing … to the development of leukemia?”

Only then did the McElheneys consider the possibility that living beside one of the nation’s 1,500 bulk-oil terminals — known sources of cancer-causing benzene — had triggered their son’s leukemia.

“It was one of those light-bulb moments for us,” said Jeff McElheney, Jarrett’s father. “You never get over it.”

New battlefront for industry

Jarrett McElheney does not represent the standard benzene plaintiff. He’s not among the hundreds of thousands of people who toil in American oil refineries or other workplaces contaminated with the chemical and run the risk of developing leukemia. In the rancorous world of toxic-tort litigation, he stands virtually alone. A lawsuit filed by his parents in 2011 against Southeast Terminals owners BP and TransMontaigne is among a relatively few alleging leukemia caused by environmental benzene exposure. Among these, the McElheney case is rarer still: Most have hinged on adult leukemia.

Yet the case may signal an emerging quandary for the petrochemical industry, according to tens of thousands of pages of previously secret documents that have come to light in lawsuits filed against benzene manufacturers and suppliers on behalf of those who suffered from leukemia and other blood diseases, including Jarrett McElheney.

Internal memorandums, emails, letters and meeting minutes obtained by the Center for Public Integrity over the past year suggest that BP and four other major petrochemical companies, coordinated by their trade association, the American Petroleum Institute, spent at least $36 million on research “designed to protect member company interests,” as one 2000 API summary put it. Many of the documents chronicle a systematic attempt by the petrochemical industry to influence the science linking benzene to cancer. Others attest to the industry’s longstanding interest in topics such as childhood leukemia.

“A number of publications in the last few years have attempted to link increased risks of childhood leukemia with proximity to both petroleum facilities and local traffic density,” another 2000 API memo warns. “Although these publications have had little impact to date, the emphasis on ‘Children’s Health’ may cause these concerns to resurface.”

“This is indeed a battlefront for the oil industry,” said Peter Infante, a former director of the office that reviews health standards at the Occupational Safety and Health Administration, who has studied benzene for 40 years and now testifies for plaintiffs in benzene litigation. He has worked on a handful of cases involving children sickened by leukemia.

“It’s in the industry’s economic interests to refuse to acknowledge the relationship between benzene and childhood leukemia,” Infante said.

In May, in a sign of the chemical’s continuing threat, the U.S. Environmental Protection Agency estimated that 5 million Americans — excluding workers — face heightened cancer risks from benzene and 68 other carcinogens spewed into the air by the nation’s 149 oil refineries. The EPA has proposed a rule that would require refinery operators to monitor for benzene, in particular, along their fence lines.

Aimed at curbing “fugitive” emissions from equipment leaks and similar releases, the proposal would set a fence line limit for benzene of 3 parts per billion — a fraction of the 10 ppb the agency recommends as the maximum chronic exposure level for the chemical.

Industry groups are pushing back. In written comments, the API’s Matthew Todd called the proposal “a major and significant Agency action [that] will dramatically increase the paperwork and recordkeeping burden on refineries. It includes several precedent-setting proposals, will cost our industry hundreds of millions of dollars per year, increase safety risk [and] may impact fuels production and cost …. Production outages will likely occur.”

The EPA also heard from the people the rule is designed to protect. “We live near a refinery, and as a result my son can’t breathe,” a woman from Fontana, California, wrote in Spanish. “My cousin had respiratory problems while living near a refinery for more than 10 years,” a woman from Houston wrote, also in Spanish. “Unfortunately, he died 2 years ago from bone cancer. We believe this was a result of the ambient air where he lived.”

In June, California officials lowered the long-term exposure level for benzene from 20 ppb to 1 ppb — among the lowest in the country — setting the stage for further emissions cuts at refineries and bulk-oil terminals in that state. Officials say such regulatory actions aim to protect children, who are more susceptible to benzene’s toxic effects than adults because their cells aren’t as developed. California is considering classifying benzene not just as a human carcinogen, but as a “toxic air contaminant which may disproportionately impact children.”

“The fact that benzene impacts the blood-forming organs when you’re a developing child is a big deal,” said Melanie Marty of the state’s Office of Environmental Health Hazard Assessment.

Hidden menace

ill McElheney agrees. A warm, garrulous mother of five who has schooled herself in the health effects of pollution, she has spent the past 16 years seeking the cause of her son’s leukemia. She has filed open-records requests and contacted state and federal agencies, piecing together a history of gasoline spills and diesel-fuel leaks at Southeast Terminals. She can cite endless details about lingering benzene contamination on terminal property — extensively catalogued in state enforcement files — located “a stone’s throw away” from the trailer park where her family lived for seven years.

Jeff, Jarrett and Jill McElheney stand in the former site of the Oakwood Mobile Home Park, where the family was living when Jarrett was diagnosed with a form of childhood leukemia. Phil Skinner for the Center for Public Integrity
Now vacant and overgrown with brush, the former site of the Oakwood Mobile Home Park lies across a residential street from Southeast Terminals, its tanks rising above a thicket of pines and oaks. All day, every day, trucks drive in and out of the facility’s gates, filling tankers with gasoline and other products.

What can’t be seen is the plume of benzene that has worked its way into the groundwater beneath the tanks. “It’s not like Cancer Alley, with smokestacks belching crap in your face,” Jill said. “It’s hidden — literally.”

When she and Jeff moved to Oakwood in 1992, they saw the 14-trailer community as something of an oasis — quiet, tight-knit. Nestled under shady trees, near churches and schools, it seemed like the perfect location. Even the park’s water supply, drawn from an unpermitted well dating back decades, appeared idyllic: Its pump house served as a beacon on park property, visible for all to see — including, court depositions later confirmed, terminal employees.

“We saw Oakwood as an opportunity,” recalled Jeff, a mustachioed, genial man who operates a roofing company and managed the park for his father, its previous owner.

Jarrett McElheney, center, with 3 of his 4 siblings. Courtesy of the McElheney family
Jarrett arrived two years later and, by his fourth birthday, had grown into an adventurous boy with an abiding love of water. His parents remember him splashing in the tub for hours. Often, he swam in an inflatable pool in their yard, dressed in what he called his “little blue [wet] suit.” He slurped on Kool Aid and popsicles made from well water whose purity his parents never questioned — until his 1998 diagnosis of acute lymphocytic leukemia, or ALL, a form of the blood cancer found overwhelmingly in children.

Within days of hearing the news, Jarrett’s parents tested their water. Samples from the Oakwood well revealed a brew of such chemicals as carbon tetrachloride and 1,2-dichloroethane, sparking a state investigation. The Georgia Environmental Protection Division (EPD) found benzene in the water of Oakwood’s well at levels up to 13 ppb — 26 times higher than the federal safety standard. In response, the agency shuttered the well and connected residents to public water.

Over the next year, state geologists worked to identify the contamination’s source. They dug monitoring wells and collected soil samples. Their initial investigation linked at least one pollutant in the park well — not benzene — to nearby abandoned grain silos. Geologists eventually eyed Southeast Terminals as a likely source of the benzene contamination, records show.

“The terminals are certainly suspects for the benzene detected in the [Oakwood] well,” one posited in a 2000 email. “The probable path is deep ground water.”

Another noted the presence of “a possible plume (with benzene) moving by Oakwood … and within a few hundred feet of the [park]’s former well, [thus] too close for comfort for a public-water supply well.”

Two years later, EPD investigators were still documenting high levels of benzene, ranging from 8,000 to 12,000 ppb, on terminal property — as well as the likelihood that, one 2002 EPD memorandum states, “the benzene contamination found in the trailer park well came from the Southeast Terminals.”

Ultimately, though, the state’s two-year, nearly $200,000 investigation yielded few answers. By 2008, groundwater monitoring results revealed only trace amounts of benzene at Oakwood. Today, EPD officials say they lack definitive proof tying the well’s benzene pollution to any source.

For Jill McElheney, the outcome of the inquiry was anything but satisfying. “It just seems to me that when you’ve got benzene in a well and a major source of it next door, you’d make the connection,” she said.

In fact, Jill already had been seeking answers elsewhere. In 2000, she turned to the federal Agency for Toxic Substances and Disease Registry, or ATSDR, petitioning it for a public health assessment. Instead, the agency launched a less-thorough public health consultation, meant to ascertain the risk to human health posed by the contaminated well water at Oakwood.

The results brought little clarity. In a 2001 report, the ATSDR determined that “the groundwater contaminant plume” initially sampled in the Oakwood well “is a public health hazard.” At the same time, it singled out a pollutant other than benzene as the threat. For benzene, the agency found that “the likelihood someone would get cancer as a result of their exposure is very low.”

In a 2000 draft filed with the state, however, the ATSDR concluded that the highest concentrations of benzene in the water were of concern. “This risk DOES exceed an acceptable risk level,” the draft states, “and may result in an elevated risk of cancer for exposed individuals.”

An ASTDR spokeswoman did not respond to requests for comment.

Mounting evidence on benzene and leukemia

The science linking benzene to cancer — particularly leukemia, in all its forms — has preoccupied the petrochemical industry for more than half a century. As far back as 1948, the API’s toxicological profile of the chemical discussed “reasonably well documented instances of the development of leukemia as a result of chronic benzene exposure,” cautioning that “the only absolutely safe concentration … is zero.”

Later, as scientific evidence of benzene’s hazards accumulated and regulatory limits on workplace and environmental levels tightened, the industry took a different stance. By 1990, the API and member companies such as BP, Chevron, Mobil and Shell had launched a research program meant to keep further restrictions at bay — or, minutes from an API meeting in 1992 state, research “that will be most useful in improving risk assessment and influencing regulation.”

Within months, the API task force overseeing the program was enumerating “developing issues.” Topping its list, according to minutes from a meeting in 1993, was this notation: “link to childhood leukemia?”

That possible link appeared on the industry’s radar again in 2000, documents show. At the time, API representatives were drumming up financial support for an unparalleled study of workers exposed to benzene in Shanghai, China, delivering what amounted to a sales pitch for the project. They touted what one 2000 API overview described as its “tremendous economic benefit to the petroleum industry” — helping to combat “onerous regulations” and “litigation costs due to perceptions about the risks of even very low exposures to benzene.” Childhood leukemia was mentioned explicitly.

Five years later, industry representatives grew concerned enough to bankroll their own research. Documents show the API task force approved funding for what minutes of one meeting in 2005 dubbed a “benzene regulatory response,” comprising a “childhood leukemia review” and “child-to-adult sensitivity to benzene” analysis, for a total of $30,000.

By then, the scientific evidence on benzene and leukemia in adults was well-established. Throughout the 1960s and early 1970s, studies of Italian shoe and leather workers indicated a relationship between the chemical and the cancer. Then, in 1977, the National Institute for Occupational Safety and Health, part of the Centers for Disease Control and Prevention, launched a seminal study of two Goodyear plants in Ohio that made Pliofilm, a thin rubber wrap. The research quantified for the first time the leukemia risk for workers exposed to benzene, prompting OSHA to work on a stricter standard that took effect in 1987.

In years since, the science has solidified. Recent research has shown lower and lower levels of the chemical — less than the OSHA limit of 1 part per million — can cause leukemia as well as other blood and bone marrow disorders.

By contrast, experts say, the research on benzene and childhood leukemia isn’t as conclusive. Multiple studies have indicated that children whose mothers were exposed to benzene-containing solvents during pregnancy experience elevated risks of developing the disease. Others have shown that children living near gas stations or highways — breathing in benzene in the air — face heightened risks. One 2008 study reported a significant spike in the rate of the disease in Houston neighborhoods with the highest benzene emissions.

Taken together, the nearly four dozen publications on the topic strongly suggest the carcinogen can cause leukemia as much in children as adults, experts say.

“Children aren’t another species,” said Infante, the former OSHA official who has reviewed the scientific literature for medical associations and governmental agencies. “If benzene causes leukemia in adults, why wouldn’t it cause leukemia in children?”

The scientist behind the API-commissioned analysis would likely disagree. In 2009, David Pyatt, a Colorado toxicologist with long-standing ties to the petrochemical industry, published a journal article about his review, in which he reported examining 236 studies on the relationship between benzene and childhood leukemia. Many of the studies suggesting a link “suffer from the same limitations,” he concluded, such as poorly quantified exposure estimates.

“At this point,” Pyatt wrote, “there is insufficient epidemiologic support for an association or causal connection between environmental benzene exposure … and the development of childhood [leukemia].”

Some say the review reflects a common industry tactic: Compile studies on a subject, and then shed doubt on each one by claiming the data aren’t good enough.

Pyatt did not respond to repeated emails and phone calls from the Center seeking comment; nor did the API.

In depositions, Pyatt acknowledged that he has never testified for a plaintiff in a benzene exposure case. He has worked as a consultant and defense expert for such petrochemical giants as BP, ConocoPhillips, ExxonMobil and Shell, he has said; the API has financed additional work of his on benzene, as has the American Chemistry Council, the chemical industry’s main lobby.

In a deposition taken last year, Pyatt said he wouldn’t discount benzene’s link to childhood leukemia — at least, not to acute myeloid leukemia, or AML, a type rarely found in children.

“There is no reason to think that [children] are going to be protected,” he testified. “So I would certainly think that a child can develop AML if they are exposed to enough benzene.”

In other depositions, Pyatt has conceded no link between benzene and ALL, the type that attacked Jarrett McElheney.

‘They have to stop this practice’

For the McElheneys, the extent of the benzene contamination from Southeast Terminals only came to light years after Jarrett’s chemotherapy regimen had beaten back his leukemia. Yet state and federal enforcement records pinpoint on-site releases of the chemical in 1991, a year before the family moved to the area. At the time, managers of the terminal — jointly owned and operated by BP and Unocal Corp. — discovered a leak of diesel fuel seeping through soil where an underground pipeline was buried.

Terminal employees removed 40 cubic yards of “petroleum contaminated soils,” according to a report filed by BP with the state, and recorded benzene on site at levels as high as 81 ppb. Groundwater samples showed even higher concentrations: 12,000 ppb.

State regulators found such pollution “exceeds our ‘trigger’ levels,” a 1991 letter to the company states, and requested further action.

Under Georgia law, the company was required to develop what the EPD calls a “corrective action plan,” which, among other things, would have delineated the terminal’s benzene plume, as well as identified nearby public water wells.

In a 1991 reply, BP promised the EPD it would file its plan in four months.

Nine years later — after the McElheneys had tested their well water and the EPD had issued a 2000 citation against BP for failing to submit a “timely” corrective action plan — the company finally carried out that requirement, records show.

BP, in charge of the terminal’s daily operations, declined to comment for this article. At different times, Unocal, Louis Dreyfus Energy and TransMontaigne have been BP’s partners at the site. TransMontaigne, its current partner, did not respond to repeated emails and phone calls. TransMontaigne purchased Louis Dreyfus Energy in 1998. Chevron, which merged with Unocal in 2005, declined to comment.

Today, state regulators attribute their own delay in cracking down on the diesel leak to an internal debate over which EPD division had authority over the terminal’s benzene contamination — its underground storage tank program, which has purview over the pipeline; or, its hazardous waste branch. For years, compliance officers in that branch, along with their counterparts at the EPA, had been monitoring the facility’s practice of dumping benzene-laced wastewater on site — a practice later confirmed by terminal employees in court depositions.

In 1990, the EPA issued new rules classifying benzene as hazardous waste and requiring bulk-oil terminals to have permits for discharging the “bottoms water” in petroleum tanks. This wastewater can become tainted by the chemical when mixed with gasoline. Rather than treat the water, Southeast Terminals funneled it through an “oil/water separator” to skim off fuel, and then dumped it into a ditch on the ground.

Company records at the time show that terminal supervisors admitted they drained the wastewater “direct into streams” or “a dike area which eventually drains offsite into a stream.”

“I remember thinking, ‘They have to stop this practice,’” said John Williams, an EPD environmental specialist who inspected the terminal in 1993 and documented the dumping.

Three months later, the EPD issued a notice of violation against Southeast Terminals, forcing supervisors to test the bottoms water. Regulators found benzene at levels four times greater than the legal limit of 0.5 ppb, prompting the EPA to take action.

“We saw an issue there,” said Darryl Hines, of the EPA’s regional office in Atlanta, explaining why officials initiated a 1997 civil enforcement action against the facility.

In its complaint, the EPA accused BP and then-partner Louis Dreyfus Energy of violating federal hazardous-waste law — disposing waste without a permit, and failing to categorize it as hazardous. The agency ordered the companies to shut down the oil/water separator, and implement a plan addressing “any groundwater contamination.”

By the time Jarrett developed leukemia a year later, the EPA had negotiated a settlement with the companies and laid out a series of requirements for cleaning up the benzene. Without admitting fault, BP and Louis Dreyfus agreed to spend at least $100,000 to remove leaking underground pipelines and install above-ground infrastructure. They also paid a penalty of $15,000.

When BP finally filed its long-delayed action plan, it revealed the presence of what EPD project officer Calvin Jones described as a “dissolved hydrocarbon” plume containing benzene — “a bigger problem than we had thought.” The chemical, concentrated at 500 ppb and counting, had spread beyond the immediate spill areas. Of greater concern to regulators, the plan identified “free product” in groundwater.

“There was actually gasoline floating on the water,” explained Jones, of the EPD’s underground storage tank program, who oversaw the facility’s protracted cleanup. Referring to gasoline’s ability to dissolve in water, he said, “You can’t get higher concentrations of benzene … than free product.”

Despite a decade-long cleanup — 35.2 million gallons of contaminated groundwater and 1,009 pounds of benzene were collected — the chemical still saturates much of the nearly 19-acre Southeast Terminals site, records show. Last year, the EPD issued a letter declaring “no further action required,” which released the companies from remediation. At the time, the state-sanctioned benzene count remained at 1,440 ppb.

Over the years, enforcement records show, company consultants and regulators alike have tried to trace the path of the wastewater at the terminal. One company analysis details a trail beginning at the property line and then spilling into adjacent woods before hitting a tributary. Another document, produced by the EPA, depicts the discharge as moving offsite through woods and into a resident’s backyard.

“It’s where the drainage flows,” said Jeffrey Pallas, deputy director of the agency’s hazardous waste division in Atlanta, who oversaw the case against BP and Louis Dreyfus, explaining that the document, complete with photographs, was only intended to verify the hazardous-waste law violations.

“We cannot substantiate from the documentation we have that the benzene left the site,” he said.

Seeking accountability

The McElheneys have seen the evidence they need to connect Southeast Terminals to the benzene in the Oakwood well — and Jarrett’s suffering. They believe all the state and federal enforcement actions have yielded few consequences for the facility’s owners. If Jarrett hadn’t gotten sick, they say, they might never have known about the benzene hazard. “The companies would have paid off their small fines,” Jill said, “and nobody would have been the wiser.”

Seeking some accountability, the family filed a lawsuit three years ago against BP, TransMontaigne and seven other previous owners, alleging that the “illegal discharge and release of toxic chemicals” at Southeast Terminals contaminated the surrounding environment and caused Jarrett to develop leukemia.

In court filings, the companies denied the allegations and dismissed any link between benzene and childhood leukemia. Last year, defense lawyers invoked a familiar tactic: They cited the Pyatt review to support their claims that the chemical couldn’t have caused Jarrett’s illness. The family recently has agreed on a settlement in principle and is working toward resolving the litigation.

“I thought, ‘This is par for the course,’” said Jill, who has read some of the industry documents uncovered by the lawsuit. “The oil industry has fought regulations and lawsuits for workers and adults. Now they’re going to do it with children.”

Jarrett is now a slight, reserved 20-year-old in remission. He remembers his bout with leukemia through a child’s eyes — the “really cool” ambulance rides, the nurses with coloring books, swinging golf clubs in hospital hallways. “I remember being stuck over and over again by needles” while getting a bone-marrow aspiration or a chest catheter or countless blood draws, he said. “But it wasn’t until much later I realized what happened to me didn’t happen to other kids.”

Today, he has had to grapple with cancer’s lasting effects — the feebleness, and the fatigue — as well as its lingering fears. As a leukemia survivor, he is at risk for developing osteoporosis, cataracts, or even another cancer. Sitting in an Olive Garden in Athens, sandwiched between his parents, Jarrett came across as exceedingly shy, uncomfortable in the limelight. Often, his parents did the speaking for him.

Moments earlier, Jill had explained how leukemia had changed her son, taken an emotional toll.

“He had a really loud voice as a toddler but that voice has mellowed,” she said. “I’ll take that voice over anything.”

Maryam Jameel contributed to this story.

Click on the link below to access the original article at the Center for Public Integrity

http://www.publicintegrity.org/2014/12/08/16356/new-battlefront-petrochemical-industry-benzene-and-childhood-leukemia

Read Full Post »

A dozen dirty documents
Twelve documents that stand out from the Center’s new oil and chemical industry archive

By Kristen Lombardi for The Center for Public Integrity

The Center for Public Integrity, along with researchers from Columbia University and the City University of New York, on Thursday posted some 20,000 pages of internal oil and chemical industry documents on the carcinogen benzene.

This archive, which will grow substantially in 2015 and beyond, offers users a chance to see what corporate officials were saying behind the scenes about poisons in the workplace and the environment.

Here are 12 examples of what the petrochemical industry knew about benzene; the impetus behind industry-sponsored science; and the corporate spin that often occurs when damning evidence against a chemical threatens companies’ bottom lines.

What the industry knew:

The industry knew the dangers of benzene exposure at both high and low concentrations, as illustrated by this 1943 report for Shell Development Company by a University of California researcher.

“Inasmuch as the body develops no tolerance to benzene, and as there is a wide variation in individual susceptibility, it is generally considered that the only absolutely safe concentration for benzene is zero.” That was a conclusion reached in a 1948 toxicological review of benzene prepared for the American Petroleum Institute, a trade association.

Benzene’s dangers known in 1943 (pg 2)
This 1943 report, prepared for Shell, is among the earliest to suggest that any prolonged exposure to benzene may be harmful.

No safe exposure level (pg 4) This 1948 review, prepared for the oil industry’s main trade group, the American Petroleum Institute, continues to torment the industry in litigation alleging benzene can cause various types of leukemia and other diseases of the blood-forming organs. In essence, it says the chemical is so potent that there is no safe exposure level.

A 1950 consultant’s memo to Shell lists benzene as having “established carcinogenic qualities.”

Benzene recognized as a well-known carcinogen (pg 1)

This 1950 memorandum from a consultant for Shell Development Company notes that benzol — an obsolete name for benzene — is a well-known carcinogen. As the author states, the memo was prompted by “an increased concern about the incidence of cancer” among Shell workers.

Motivations for industry involvement in research:

In 1995, a benzene study by the National Cancer Institute caught the attention of Exxon scientists, who closely monitored it.

Industry interest in cancer research (pg 1)
An Exxon scientist, B.F. Friedlander, explains that he and industry colleagues are “monitoring” a series of studies by the National Cancer Institute because of their focus on “health risks at low benzene exposures.” The memo shows the petrochemical industry’s early interest in the work of the NCI, which has examined the effects on Chinese workers exposed to benzene at levels below the legal occupational limit in the United States.

While attempting to gain support for a proposed study of benzene toxicity in Shanghai, China, the American Petroleum Institute cites “a tremendous economic benefit” to companies, which could gain data to combat “onerous regulations.” A project overview explains that publications linking benzene to childhood leukemia may cause concerns about the chemical to “resurface.”

‘Tremendous economic benefit’ from the industry study (pg 1)
The six-page overview touts the proposed Shanghai research as a way for the petrochemical industry to gain an “accurate understanding” of benzene’s health effects, which, in turn, would bring “tremendous economic benefit.”

A 2000 summary of the API’s research strategy, drafted by the group’s Benzene Task Force, explains that the research program “is designed to protect member company interests.” The anticipated results could “significantly ameliorate further regulatory initiatives” to curb benzene emissions.

Protecting industry interests (pg 2)

The summary describes the intent of the API’s research program as being “designed to protect member company interests.”

An email exchange explains how “HSE [health, safety and environment] issues surrounding benzene as well as the litigation claims” against the industry compel companies to participate in the industry-sponsored study.

Motivations for research (pg 2)
An email from one Shell executive argues that the “litigation claims we continue to see” are prime reasons for the company to spend millions of dollars on the proposed Shanghai research.

A PowerPoint presentation from 2001 lists “significant issues of concern” to encourage financial support for the API’s research on benzene-exposed workers in China. Among them is “litigation alleging induction of various forms of leukemias and other hematopoietic diseases.” The study, according to the presentation, could provide “strong scientific support for the lack of a risk of leukemia or other hematological diseases at current ambient benzene concentrations to the general population.”

Significant issues of concern (pg 3)
This PowerPoint slide suggests “significant issues of concern” that the proposed Shanghai research might help combat, which would save the petrochemical industry “millions of dollars in expenses.” The issues include more stringent regulations and litigation from benzene exposure.

“Litigation support” and “risk communication” are listed as goals in this 2007 memorandum describing an API risk management program. Further objectives are to establish current regulations as “protective” and avoid additional action.

Oil lobby’s risk management program (pg 1)
The memorandum details the oil lobby’s benzene “risk management” program, intended to “develop scientific data” for it and its member companies to use for “science advocacy” and “litigation support.”

Corporate spin

An undated litigation defense guide written by a senior Shell attorney acknowledges the 1948 report on leukemia and offers a “comprehensive strategy” on how to respond to litigation, including releasing benzene-related documents only on court order.

Acknowledgement of the science showing no safe levels of benzene (pg 4)

Here the author, Richard O. Faulk of Shell Oil’s legal department, references a 1948 Toxicological Review prepared for the American Petroleum Institute. The review found that “the only absolutely safe concentration for benzene is zero.”

After a draft of an API recruitment brief reminds potential study sponsors of “personal injury claims,” an email exchange among members of the Benzene Health Research Consortium urges deletion of “the reference to legal liabilities.”

Don’t mention the legal liabilities (pg 3)

This email from a Shell executive responds to an attached draft of a 2002 recruitment brief that reminds prospective donors about benzene liability costs. In the email, the executive urges colleagues to delete “the reference to legal liabilities” and emphasizes that “the only reason we are doing this is in support of protecting workers.”

A 2001 email from the consortium’s communications committee explains that the perception of the study “needs to be that this is not being done to protect against litigation”

Controlling the message on benzene (pg 1)

The email shows the companies behind the Benzene Health Research Consortium working hard to control their message. It lays out the “scope of public affairs” for the consortium’s communications committee, which includes countering any “perception” that the Shanghai study was “done to protect against litigation.”

Click on the link below to access original article and archival documents.

http://www.publicintegrity.org/2014/12/05/16361/dozen-dirty-documents

Read Full Post »

Older Posts »