Feeds:
Posts
Comments

Archive for the ‘Consumer & Parent Resources’ Category

The Dark Side of the Perfectly Manicured American Lawn: Is It Giving You Cancer?  By McKay Jenkins from the book Contamination 

On a beautiful April day, I decided to meet outside with my students at the University of Delaware, where I teach journalism. We sat on the central lawn between two buildings that just happened to bear the names of two gargantuan chemical companies: DuPont and Gore. In the middle of a conversation about agricultural pesticides, a groundskeeper, dressed from feet to neck in a white chemical suit, drove by us on a mower. He wasn’t cutting the grass, though; he was spraying it. And not from one nozzle, but from half a dozen. Up and back he went, describing parallel lines as neat as those in any Iowa farmer’s cornfield. Not a blade escaped the spray. This became a perfect teaching moment.

“Who’s going to ask him what he’s spraying?” I asked my students. One young woman marched over to the groundskeeper. He turned off his engine, they spoke, and she returned.

“He said he’s spraying 2,4-D,” she said. “He said we didn’t need to worry, because he sprayed where we’re sitting at five this morning.”

Which would mean about seven hours earlier. My students chuckled uneasily. He was wearing a full-body chem suit, and they were sitting on the grass in shorts and bare feet?

They’d never heard of 2,4-D, or 2,4-dichlorophenoxyacetic acid. But they had heard of Agent Orange, the notorious defoliant used in Vietnam, and 2,4-D, one of the most extensively used herbicides in the world, is a constituent of Agent Orange (it did not cause the bulk of the devastating effects associated with Agent Orange). It was developed during World War II, mostly as a weapon to destroy an enemy’s rice crops. Despite its history, 2,4-D has long been seen as safe for consumer use.

In the 1940s, botanist E. J. Kraus of the University of Chicago fed five and a half grams of pure 2,4-D to a cow every day for three months. The cow was fine, according to Kraus, as was her calf. Kraus said he himself had eaten half a gram of the stuff every day for three weeks and felt great. This was apparently good enough for the rest of the country; within five years, American companies were annually producing 14 million pounds of the stuff. By 1964, the number had jumped to 53 million pounds.

Today, annual sales of 2,4-D have surpassed $300 million worldwide, and it’s found in “weed and feed” products, like Scotts Green Sweep, Ortho Weed B Gon, Salvo, Weedone, and Spectracide. At first, its impact on humans seems mild—skin and eye irritation, nausea, vomiting, dizziness, stiffness in the arms and legs—and many lawn-care companies have dismissed health concerns. Plus, the businesses add that the amount of chemicals in sprays is very diluted.

With 80 million home lawns and over 16,000 golf courses, you get close to 50 million acres of cultivated turf in America.

But the effects are more worrisome when considered over time. Because 2,4-D is designed to mimic a plant’s natural growth hormone, it causes such rapid cell growth that the stems of treated plants tend to become grotesquely twisted and their roots swollen; the leaves turn yellow and die; and the plants starve to death (2,4-D does not have this effect on grass).

Unsurprisingly, 2,4-D also appears to affect human hormones. The National Institute of Health Sciences lists it as a suspected endocrine disrupter, and several studies point to its possible contribution to reproductive-health problems and genetic mutations. Although the EPA says there isn’t enough evidence to classify 2,4-D as a carcinogen, a growing body of research has begun to link it to a variety of cancers.

A 1986 National Cancer Institute (NCI) study found that farmers exposed to 2,4-D for 20 or more days a year had a sixfold higher risk of developing non-Hodgkin’s lymphoma. Another NCI study showed that dogs were twice as likely to contract lymphoma if their owners used 2,4-D on their lawns.

Like flame retardants, this compound also tends to accumulate inside people’s homes even days after the lawn has been sprayed. One study found 2,4-D in the indoor dust of 63 percent of sampled homes; another showed that levels of the chemical in indoor air and on indoor surfaces increased after lawn applications. After 2,4-D was sprayed, exposure levels for children were ten times higher than before the lawns were treated—an indication of how easily the chemical is tracked inside on the little feet of dogs, cats, and kids.

Thanks to pressure from campus activists, my university replaced 2,4-D with “softer” herbicides and began putting signs on lawns that had just been sprayed. Of course, 2,4-D is one of scores of pesticides in use. According to David Pimentel, professor emeritus of entomology at Cornell University, 110,000 people suffer adverse health effects from pesticides every year, and 10,000 cases of cancer in humans may be attributable to pesticide exposure.

 

The Greening of America

In 1900, 60 percent of Americans lived in rural areas. Today, 83 percent live in cities or suburbs. With that change has come an astonishing shift in the landscape. Over the past half century, Americans have become obsessed with grass. When you add up the country’s 80 million home lawns and over 16,000 golf courses, you get close to 50 million acres of cultivated turf in the United States, an expanse roughly the size of Nebraska. This space is growing by 600 square miles a year.

By 1999, more than two thirds of America’s home lawns had been treated with chemical fertilizers or pesticides—14 million by professional lawn-care companies. A year later, the U.S. General Accounting Office reported that Americans were spraying 67 million pounds of synthetic chemicals on their grass every year, and annual sales of lawn-care pesticides had grown to $700 million.

The landscaping trucks rolling through our suburban neighborhoods seem to represent something more than a communal desire for lush grass. Could it be relief from anxiety? (Why else call a company Lawn Doctor?) For one thing, hiring lawn-care specialists is a public declaration that you have the money not to take care of your yard yourself.

Diligent lawn maintenance and chemical use are also associated with approval and social status, Ohio State researchers reported in 2012: “The main factor influencing a homeowner’s decision to use lawn chemicals is whether neighbors or other people in the neighborhood use them. Homeowners crave acceptance from their neighbors and generally want their lawns to fit in with their surrounding community, so they adopt their neighbors’ practices.”

We also create manicured lawns to play the most chemically dependent of pastimes: golf. By 2004, there were just under 15,000 golf courses in the United States—a patchwork of chemically treated turf the size of Rhode Island and Delaware combined.

Even grass seed comes coated with chemicals. A close look at a bag of Scotts grass seed reveals it has been treated with Apron XL fungicide, whose active ingredient is Metalaxyl-M, or methyl N-(methoxyacetyl)-N-(2,6-xylyl)-D-alaninate. The bag requests that the product be stored away from foodstuffs, kept out of the reach of children, and not be applied near water, storm drains, or drainage ditches. (A Scotts spokesperson says that its products are designed to be safe when used as directed.)

As the use of chemicals has become widespread, lawn companies have found an unexpected source of profits. Herbicides like 2,4-D preserve grass but kill weeds like clover. Clover, however, pulls nitrogen out of the air and fixes it in the soil. Without clover, soil becomes nitrogen poor and fails to support plant life. So chemical companies now replace the depleted nitrogen, which homeowners used to get for free from clover, with synthetic nitrogen, for which they have to pay.

In America’s watersheds, nitrogen runoff is considered among the worst problems for water quality. Since synthetic fertilizers are water soluble, a good amount runs off your lawn after a rain, where it mixes with runoff from other homes and ends up feeding the plants in bodies of water. Doused with chemicals, algae grow and grow, creating “algae blooms” that—as they decay and die—suck most of the oxygen out of rivers, lakes, and bays and lead to massive “dead zones,” in which neither fish nor plants can live.

In 2007, the Chesapeake Bay Foundation published a report card on the bay’s health that showed just how much trouble chemicals can pose. The bay received an F for nitrogen pollution, a D-minus for phosphorous, an F for water quality, an F for dissolved oxygen, and a D for toxics. On a scale of 100 (with 100 being the best), the bay’s health was rated at 28.

In California, scientists are discovering that algae blooms off the coast not only remove oxygen; they also release a toxin, domoic acid. It enters the food chain when fish eat algae, then moves into the sea lions that consume the fish. If a sea lion is pregnant, her fetus can be contaminated, and years later, that mammal may develop epilepsy.

 

One Man’s Chemical Conversion

Paul Tukey knows about pesticides; the man who invented 2,4-D was a distant cousin. When Tukey was a kid in the late 1960s, his grandfather hired a biplane to spray his 300 acres of fields in Maine a couple of times a year. The fields were mostly planted with cattle feed, not with crops intended for human consumption. For Tukey, spraying day was a thrill.

“My grandfather would go out in the field, dressed in his wool underwear and thick heavy pants, and wave the biplane over his field,” Tukey recalled. “They’d drop this white powder, and he’d get back in the truck looking like Frosty the Snowman. Then we’d drive to the next field, and he’d do it again. My grandfather was getting doused 20 times a day, but he would never let me get out of the truck. I always wondered why I couldn’t go out and get dusted.”

Tukey’s grandfather died of a brain tumor at 60.

Tukey also followed his family’s agricultural tradition but charted his own course. For years, he operated one of southern Maine’s largest landscaping services and considered his job ideal. He worked outside in shorts and sandals. He never bothered with putting on protective gear.

In 1993, he started getting nosebleeds. His vision became blurry. But with business booming, Tukey was too busy to worry. One of his jobs was tending the grounds of a hospital where he hired university students for the work. One day, their professor, an eminent horticulturist named Rick Churchill, came by to say hello to his students. Tukey went out to greet him.

Churchill’s eyes were focused on the weeds, which Tukey’s crew had doused with herbicides and which were curling up and turning brown.

Churchill said, “I asked him how anyone in good conscience could be applying pesticides on the grounds of a hospital where there were patients being treated for cancers that could be linked to their exposure to pesticides. I asked whether he knew anything about the toxicity ratings of what he was applying and how dangerous many of these compounds were to an individual compromised by illness.”

The words cut deeply. “It was devastating,” Tukey told me. “In Maine, Rick Churchill is an icon.”

“You have broken bags of poison,” Tukey told the manager. “They all say, ‘Keep out of reach of children’!”

Tukey did some reading, and what he found was troubling. Pediatric cancers in Los Angeles had been linked to parental exposure to pesticides during pregnancy. In Denver, kids whose yards were treated with pesticides were found to be four times more likely to have soft-tissue cancers than kids whose yards were not. Elsewhere, links had been found between brain tumors in children and the use of weed killers, pest strips, and flea collars.

Tukey also learned that exposure to lawn chemicals was particularly alarming for people who spread them for a living. One study showed a threefold increase in lung cancer among lawn-care workers who used 2,4-D; another found a higher rate of birth defects among the children of chemical appliers. When he finally went to the doctor for his rashes and deteriorating eyesight, he learned that he had developed multiple chemical sensitivity. And his son—conceived in 1992, during the height of Tukey’s use of synthetic chemicals—was diagnosed with one of the worst cases of ADHD his physician had ever seen. (Several recent scientific reports suggest that toxic chemicals may play a role in ADHD.)

“All the evidence indicates that you don’t want pregnant women around these products, but I was walking into the house every single night with my legs coated with pesticides from the knees down,” he said. “Even when my son was a year or two old, … [he] would greet me at the door at night by grabbing me around the legs. He was getting pesticides on his hands and probably his face too.”

Tukey’s Breaking Point

In the midst of his research, Tukey was driving one day when he saw a sign: A store was having a big sale on Scotts Turf Builder. Tukey made a beeline. He was going to buy the store’s entire stock. Once inside, he walked to the lawn-care section. Tukey noticed a woman standing by the lawn chemicals. At her feet, a girl was making sand castles from a broken bag of pesticides. Suddenly, something in him burst—the DDT squirting over his grandfather’s fields, the chemicals that he’d sprayed outside the hospital, and now a child in a pile of pesticides.

Tukey told me, “I said, ‘Ma’am, you really shouldn’t let your child play with that. It’s not safe.’ I’m fundamentally shy, but this just came out of me.”

The store wouldn’t sell the stuff if it wasn’t safe, she told Tukey. She took her child and walked away. A manager came up and asked him if there was a problem. Tukey said there was.

“You have broken bags of poison on the floor,” Tukey said to the manager. “All those bags say, ‘Keep out of reach of children’!”

Those labels are there because of government formality, the manager said. The stuff isn’t dangerous. The store wouldn’t carry it if it was.

“That really was the stake in the heart of my chemical career,” Tukey said. “By then, I’d already made myself sick. I’d already been questioned by Rick Churchill. When I saw that girl making sand castles out of the pesticides, [there] was just a sudden gut-level reaction I couldn’t have anticipated. I was shaking when I left the store.”

Tukey issued a decree to his employees: His business was going organic. It was time to start weaning his company—and customers—off synthetic chemicals. Most clients were fine with his decision, just as long as it didn’t cost any more and as long as their lawns continued to look the same.

More than 170 municipalities in Canada have banned lawn pesticides, especially on public spaces like school yards and sports fields. Denmark, Norway, and Sweden have banned 2,4-D. In 2009, the European Parliament passed laws banning 22 pesticides that can cause cancer or disrupt human hormones or reproduction.

 

How to Bring Back Butterflies

Certainly, switching to a less toxic lawn company can reduce your family’s—and neighbors’—exposure to synthetic chemicals. It would also reduce the pollutants you contribute to the watershed. But there is another option, one that gets into the more inspiring realm of restoration. There is a way to think of your yard as more than a burden that needs to be mowed and weeded. There is a way to think of your yard as transformational, even magical. Doug Tallamy can show you how.

When Tallamy, former chair of the entomology department at the University of Delaware, walks around his yard, he sees things most of us would not. He can look at a black cherry tree and spot the larvae of 13 tiger swallowtail butterflies. He has planted scores of trees: sweet gums, tulips, white oaks, river birches, and sugar maples. But he’s really interested in bugs and birds—and boosting their numbers.

Suburban development has been devastating to avian populations. Most of the birds we see in our yards are probably house sparrows and starlings, invasive species from Europe. If you study the population numbers for native birds, you’ll find the wood thrush is down 48 percent; the bobwhite, 80 percent; bobolinks, 90 percent. An estimated 72 million birds are killed each year in America by direct exposure to pesticides, a number that does not include baby birds that perish because a parent died from pesticides or birds poisoned by eating contaminated insects or worms. The actual number of birds killed might be closer to 150 million.

In mid-Atlantic gardening circles, Tallamy is a bit of a prophet, his message freighted with both gloom and promise. It is the promise of ecological renewal that he most wants people to understand. His vision is based on three ideas: If you want more birds, you need more native insects; if you want more native insects, you need more native plants; and if you want more native plants, you need to get rid of—or shrink—your lawn.

Tallamy says that when we wake up in the morning to birdsong, it’s often being made by hungry migratory birds that may have just flown 300 miles. What is there to eat? Too frequently, ornamental trees that bear none of the insects the birds need—and chemically treated grass. Tallamy’s prescription: Put in native plants that will make your yard a haven for caterpillars, butterflies, and birds. In the mid-Atlantic region, this can mean swamp milkweed, butterfly weed, buttonbush, joe-pye weed, and a rudbeckia species like black-eyed Susans. At the University of Delaware, Tallamy and a team are restoring native species to the campus.

And me? I ripped up 20 percent of my lawn and planted two flower gardens, two sets of flowering shrubs, and seven vegetable beds. Now my daughter helps me pick eggplants, tomatillos, okra, and Swiss chard. My son can identify not only monarchs and tiger swallowtails but also which plants they like to eat. How? Because last year the butterflies were not here, and this year they are. We replaced the grass, which monarch caterpillars can’t eat, with native flora they can consume. It’s as simple as that. Milkweed and joe-pye weed were born to grow here. All you have to do is plant them and wait for the butterflies.

 

Wise Moves for a Lush Lawn

1. Get tested. “Spending money on fertilizer without a soil test is just guessing,” says Paul Tukey. Good soil is key to a great lawn, and a soil test can tell you what’s in the dirt and what’s missing. For a test, call your county extension office (a national network of agriculture experts).

2. Plant clover with your grass. Clover competes with weeds and fixes nitrogen in the soil. John Bochert, a lawn and garden specialist in York, Maine, recommends a seed mix of white clover, perennial rye (it germinates quickly), fescue, and bluegrass.

3. Mow high, and leave the clippings. Taller grass provides more leaf for photosynthesis, develops deeper roots, and resists weeds. The clippings act as fertilizer. “Lawns mowed at four inches are the most weed-free,” Tukey says. “If you did only one thing, adjusting your mower height would be it.”

4. Cut back on watering. Frequent watering leads to shallow roots, so “water once a week if at all,” says Tukey

5. Apply compost. “Weeds need light to grow,” Tukey says. “Spreading compost on a lawn in the spring prevents weed seeds from germinating.”

6. Listen to weeds … “Weeds are nothing if not messengers,” says Tukey. “Dandelions are telling you the ground needs more calcium. Plantains are telling you the ground is too compact and needs aerating.”

7. … and to insects. Beneficial nematodes, which are microscopic worms, eat some 200 species of insects, including grubs that become Japanese beetles; you can buy them from farm and garden stores. Mix them in water, and spray them on your lawn.

 

 

 

Read Full Post »

MisLEAD: America’s Secret Epidemic Documentary on Lead Poisoning in the US

 

 

The question on many minds today: what is the source of the sudden, alarming rise in the number of American children with ADD, ADHD, Autism Spectrum symptoms and similar neurological disorders—expensive impairments/disabilities that create challenges for families and cost our society more than $50,000,000,000 annually?

MisLEAD: America’s Secret Epidemic is the first documentary film that undertakes an intellectually rigorous, emotionally compelling and illuminating inquiry into a hidden epidemic that impacts one in three American children today. Tamara Rubin, an Oregon mother whose children were poisoned, travels the country talking with parents and top experts across many fields—uncovering surprising answers.

To access the film’s website click on the link below
misLEAD the movie

“Ammunition that contains lead-based primer or lead bullets will create smoke that contains lead. This lead can be inhaled or can settle on the floor, counters, doorknobs, and other surfaces in the range. Shooters and instructors can ingest lead if they touch contaminated surfaces and then eat, drink, or smoke without washing their hands. Range operators are at higher risk of lead exposure than recreational shooters – while periodic cleaning of the range is recommended, this activity can stir up settled dust and persons conducting the cleaning can be overexposed if they are not protected.” Firearm use should be added to potential lead exposures for children.

Taken from The Commonwealth of Massachusetts “Shooting Range Lead Safety Precautions”

http://www.mass.gov/lwd/labor-standards/occupational-lead-poisoning-registry/olr-shooting-range-bulletin.pdf

Read Full Post »

Are Any Plastics Safe? Industry Tries to Hide Scary New Evidence on BPA-Free Bottles, Containers

http://www.democracynow.org/2014/3/4/are_any_plastics_safe_industry_tries


AMY GOODMAN: “Are any plastics safe?” That’s the title—that’s the question of a new exposé by Mother Jones that may shock anyone who drinks out of plastic bottles, gives their children plastic sippy cups or eats out of plastic containers. For years, public campaigns have been waged against plastic containing BPA, Bisphenol-A, a controversial plastic additive. But a new investigation by Mother Jones magazine has revealed that chemicals used to replace BPA may be just as, if not more, dangerous to your health than their cousin compound.

BPA is still widely used in everything from the lining of soup cans to printed receipts, even though studies show it mimics the behavior of estrogen in the human body, and have linked it to breast cancer, diabetes, obesity and heart disease. Just last week, a study estimated the use of BPA in food and beverage containers is responsible for some $3 billion a year in healthcare costs. But because BPA can hamper brain and organ development in young children, it’s been banned in bottles and sippy cups since 2012. Now new studies show the plastic products being advertised as BPA-free, and sold by companies such as Evenflo and Nalgene, Tupperware, are still releasing synthetic estrogen.

The Mother Jones report goes on to look at how the plastics industry has used a Big Tobacco-style campaign to bury the disturbing evidence about the products you use every day.

We’re joined in Washington, D.C., now by Mariah Blake, staff reporter with Mother Jones magazine.

Mariah, welcome to Democracy Now! Just lay out what you have found.

MARIAH BLAKE: Well, essentially, there is relatively new research showing that the vast majority of plastics, at least commercially available plastics that are used for food packaging, contain BPA-like chemicals, so chemicals that are what they call estrogenic. And the—

AMY GOODMAN: And explain what BPA is.

MARIAH BLAKE: So BPA is a chemical that mimics the hormone estrogen. And estrogen plays—we all have estrogen in our bodies. It plays an essential role in various bodily functions and is also very important in human development, so the development of our brain, the development of our organs. However, too much or too little of this hormone, basically, especially during early childhood or prenatally, can set you up for disease later on in life. So, exposure—what the research shows is that exposure in the womb can then lead to breast cancer, diabetes, increased aggression, really sort of a staggering list of health problems later on in life.

AMY GOODMAN: And so, talk about what has happened since BPA has been banned.

MARIAH BLAKE: So, yes, and many people will recall that in 2008 the dangers of BPA became very widely known. There was a scare. Major retailers pulled BPA from their shelves. Customers began demanding BPA-free products, especially for children. And many manufacturers began introducing products that were BPA-free. And all of us who have children have these BPA-free products in our home, most likely. One of the—so—and in many cases, it turns out that the chemicals that were used to replace BPA, or the plastics contained chemicals that were, you know, similar to BPA—at any rate, many of these chemicals had not been tested to see whether they had similar properties to BPA, whether they mimicked estrogen, in essence. And it turns out that many of them do. So, the implication is that they could have similar effects on human health.

AMY GOODMAN: You begin your piece by telling us the story of Michael Green and his daughter.

MARIAH BLAKE: Yes.

AMY GOODMAN: Talk about that experience.

MARIAH BLAKE: So, Michael Green is—he had a two-year-old daughter. He’s somebody who works in the environmental health field. And he had heard—he had seen research suggesting that BPA-free plastics may have posed some of the same problems to human health. And—but he told me this very moving story about himself and his two-year-old daughter. Somebody else in the family had given his two-year-old daughter this pink plastic sippy cup with a picture of a princess on it, which she just loved. And every night at dinner time, they would have this battle of the wills over this pink plastic sippy cup: He wanted to give her the stainless steel sippy cup; she wanted the pink plastic sippy cup. And in the interest of maintaining peace in the household, occasionally he gave in and gave her this pink plastic sippy cup. But the decision really weighed on him. And I think that those of us who have children—I have a three-year-old son—can relate to this situation, where sometimes you do the expedient thing in the interest of peace, but you wonder if it’s the best thing for your child. And in this case, he decided that he would try to answer that question. And he runs this environment health organization, and he collected sippy cups from Wal-Mart and Toys”R”Us—Babies”R”Us, I’m sorry—and he sent them to an independent lab in Texas to be tested. And he found out that in fact roughly a third of them did contain estrogen-like chemicals.

AMY GOODMAN: And that pink sippy cup?

MARIAH BLAKE: His daughter’s sippy cup was leaching estrogenic chemicals. So his fears were founded.

AMY GOODMAN: And what can that do to her?

MARIAH BLAKE: This is the big question. We know a lot about BPA. BPA is one of the most studied chemicals on the planet. And we know that these chemicals generally are associated with a range of negative health effects. But the specific effect of any given chemical varies slightly from chemical to chemical, and we actually don’t know what chemical is leaching out of that sippy cup. So it’s impossible to know. I mean, there’s a very high correlation with breast cancer, for example, with all of these estrogenic chemicals, and with certain developmental problems. But other specific diseases vary from chemical to chemical. So, Michael Green, the way he describes it is an unplanned science experiment that we’re doing on our families all of the time.

AMY GOODMAN: We’re going to break and then come back to this discussion and talk about Big Tobacco, what Big Plastic has learned from Big Tobacco. We are talking to Mariah Blake, a staff reporter with Mother Jones. Her story is in the new issue of the magazine. It’s called “The Scary New Evidence on BPA-Free Plastics: And the Big Tobacco-Style Campaign to Bury It.” Stay with us.

[break]

AMY GOODMAN: This is Democracy Now!, democracynow.org, The War and Peace Report. I’m Amy Goodman. We are with Mariah Blake, staff reporter for Mother Jones magazine. “The Scary New Evidence on BPA-Free Plastics: And the Big Tobacco-Style Campaign to Bury It” is her new piece. What is the campaign to bury the information, Mariah Blake?

MARIAH BLAKE: Well, there are multiple facets to the campaign, but the primary—the primary objective is to cast doubt on the scientific evidence linking these chemicals to human health problems. So—and there are various ways this is done. In the case of BPA, for example, the industry funded studies, which were biased studies that found that this—that the chemical was not harmful to health. And there’s a sort of network there. They published them in certain journals that, in many cases, had links to the tobacco industry. They relied on scientists that, in many cases, had helped to discredit the science linking smoking and secondhand smoke to disease. So, in many ways, this is—they didn’t only borrow strategies and tactics from Big Tobacco; they are actually relying on the same cadre of experts that Big Tobacco relied on to bury—to bury the truth about smoking.

AMY GOODMAN: I want to turn to a video made by the plastics industry featuring the vice president of Eastman’s specialty plastics division, Lucian Boldea, speaking in the video made by the company. A pregnant woman is one of the people shown buying plastic products as Boldea speaks.

LUCIAN BOLDEA: We understand that there are concerns about plastic materials that are used in consumer products that consumers use every day. Those products include water bottles, baby bottles and food storage containers. We can see how available information about plastic materials can be confusing and how it can be difficult for consumers to tell what is really safe. We want you, the consumer, to know the facts behind our clear, tough material named Tritan. Consumers can feel confident that the material used in the product is free of estrogenic activity.

Consumers should have high expectations of the products that they use, and no one is tougher on our products than the researchers and engineers at Eastman Chemical. Most importantly, we have used reputable, independent, third-party laboratories that have used well-recognized scientific methods to prove that Tritan is free of estrogenic activity. Numerous regulatory agencies around the world have independently reviewed our data and have approved the product for use in food contact applications. Some of the world’s most recognized brands trust Tritan as their ingredient.

AMY GOODMAN: That was Lucian Boldea, who is president of Eastman Chemical’s specialty plastics division. Can you respond to this, Mariah Blake?

MARIAH BLAKE: Well, the Eastman product, called Tritan, which is the product that Boldea is speaking about in this video, is actually one of the primary focuses of my investigation. A number of independent scientists have tested this product and found that it is actually more estrogenic than polycarbonate, which is the plastic that contains BPA. And Eastman Chemical, according to internal documents which were released as part of a lawsuit, has taken pains to suppress the evidence showing that its products—or that this product, in particular, is in fact estrogenic.

AMY GOODMAN: So how is it the EPA isn’t regulating this?

MARIAH BLAKE: Well, and this is one of the most surprising things to me when I read this—when I was reporting the story. So, there are about 80,000 chemicals in circulation in the United States. Virtually none of those chemicals has been tested for safety, or a very, very small fraction of those chemicals has been tested for safety. In general, chemicals are presumed safe until proven otherwise under the U.S. regulatory system. So, when a chemical like BPA is removed from a production line, the industry will substitute another chemical that is untested, and we really, in many cases, just don’t know the health effects of that chemical. So, it’s largely an unregulated realm.

AMY GOODMAN: Tell us about George Bittner.

MARIAH BLAKE: OK. George Bittner is a neuroscientist at the University of Texas, and he has launched an independent lab called CertiChem—it also has a sister company called PlastiPure—and it tests products for estrogenic activity. And he—working with a prominent Georgetown professor, he and his staff tested, I think it was, 455 commercially available plastics that are on the market and published a paper in Environmental Health Perspectives, which is the premier NIH journal, which found that virtually all commercially available plastics have estrogenic activity. And among the plastics he tested were Tritan products, several Tritan products. And this publication, this finding, prompted a pretty big backlash from the industry. So he ended up being targeted by the industry as a result and, in fact, was sued by Eastman, which is—many of the documents that formed the basis of my story were released as a result of that lawsuit.

AMY GOODMAN: I want to read from a memo that Eastman’s senior chemist, Emmett O’Brien, wrote after customers began asking about George Bittner’s tests that showed that Tritan may still be estrogenic. O’Brien describes a meeting with Whole Foods executives who were considering replacing their polycarbonate bulk food bins with ones made from Tritan. He wrote, quote, “We called Bittner a mad scientist. They didn’t know his name actually. They asked twice, by two independent people, what we thought of them. I hemmed and hawed (ducked and dodged) saying I prefer not to comment, but we joked and pushed and flat out said the guy was ‘shady’ — with this non-stereotypical crowd it was a good term.” O’Brien added, “They asked if they could do their own tests — I mentioned the cost is very high and they were quick to chime in that the tests take very long.” Can you respond to that, Mariah Blake?

MARIAH BLAKE: I think you chose the most telling possible quote. So this was effective—this was the strategy they used. Firstly, they worked to discredit Bittner, and they did this through a campaign of personal character assassination and by calling his business practices into question. And secondly, they worked to discredit the science. So, one of the things that Eastman did was they claimed that the test that Bittner is using, which relies on a specialized line of breast cancer cells, had been rejected by the EPA, when in fact it hadn’t. The EPA is considering using this very line of breast cancer cells for its own screening program for what they call endocrine-disrupting chemicals. BPA is one of those.

So, the other thing they did was they commissioned their own research, so they paid labs to perform research which found that Tritan was not estrogenic. And—but if you look at—if you look at the research closely, you’ll see that it is—the studies are essentially designed in a way that guarantee that estrogenic activity will not be found. So, for instance, they use a type of rat; it’s called a Charles River Sprague Dawley rat. This rat is known to be insensitive to estrogen, so it can withstand doses, according to one Japanese study, a hundred times higher than a human female can withstand, with—and show absolutely no effect. They also used doses that are below what is known as the no-observable-effect level, so the doses that are known not to cause an effect. And they then published their own study in a scientific journal, which is—has numerous tobacco industry ties, finding that Tritan was in fact not estrogenic. So, that is essentially how they responded to the finding that their product contained these chemicals that are potentially harmful to human health: They attempted to cover it up.

AMY GOODMAN: Your report cites some leaked minutes from a 2009 meeting of the BPA Joint Trade Association, whose members include the American Chemical—the American Chemistry Council, Coca-Cola, Del Monte. During the meeting, they explored messaging strategies that included using what they called, quote, “fear tactics.” For example, “Do you want to have access to baby food anymore?” The attendees agreed that the “holy grail” spokesperson was a, quote, “pregnant young mother who would be willing to speak around the country about the benefits of BPA.” Mariah?

MARIAH BLAKE: Yes, and this is one of the most disturbing things I discovered during the course of reporting this, is that in their efforts to portray plastics as safe, they oftentimes target the groups who are most vulnerable to the effects of these chemicals. So, prenatal exposure and exposure during early childhood is potentially the most harmful, and oftentimes the marketing of these products targets pregnant women, targets families with children. And also, Eastman, for example, in their efforts to portray their products as safe, also targeted these specific groups.

AMY GOODMAN: Can you talk about Nalgene bottles, Evenflo—is it Evenflo?—Tupperware, Rubbermaid, CamelBack?

MARIAH BLAKE: Yes, all of these companies produce at least some products that are made with Tritan, so—and they’re not alone. There are hundreds, probably, of companies that use this. This is the only plastic on the market that markets itself as being free of all estrogenic activity, so many companies that cater to consumers who are concerned about their health and many of the high-end consumer brands have started using this plastic. I think the thing to keep in mind is that Eastman misrepresented their product to their customers, as well. So these brands are not necessarily to blame for this. They have been told by Eastman that Eastman produced—performed independent, third-party testing and found no evidence of estrogenic activity. And so, in many cases, it appears that these companies are trying to do the best thing for their customers, but they were not given—they were not given accurate information about the plastic that they use in their products.

AMY GOODMAN: Last week, NPR did a report, “Maybe That BPA In Your Canned Food Isn’t So Bad After All.” Can you talk about that?

MARIAH BLAKE: Yes. So, this is based on a recent study that was performed by FDA scientists. This is a $30 million taxpayer-funded study. And the FDA used many of the same tactics that the industry uses. For instance, they used the Charles River Sprague Dawley rat. The other thing about this study is that the lab appears to have been contaminated. So the control group of rats—these are the rats that are supposed to not be exposed to BPA, so that you can—you have some sort of a baseline to measure the animals that have been exposed to this chemical—they were somehow accidentally exposed to BPA. I have been talking to scientists about this and am planning to write about this later this week. And the academic scientists I have been speaking to say that this essentially—this raises very serious questions about the validity of the findings, and it’s unclear whether any conclusions can be drawn based on this study.

AMY GOODMAN: What most shocked you in all your research, Mariah?

MARIAH BLAKE: Boy, that’s a good question, because there were a lot of—a lot of shocking things I discovered. I would say there’s a couple things. One, the fact that so few of the chemicals that are in the products we use every day have been tested for safety. So, as I said, there are 80,000 chemicals that are in commercial use in the United States; only a tiny fraction of those have been tested for safety.

Two, how easy it is for the industry to bias that safety testing in their favor. I had—obviously, many of us know about Big Tobacco and the way they were able to essentially buy science saying their products were safe. But I was not aware that that was happening on such a grand scale today. And it really is. You know, plastics—as I worked on the story, it became evident to me that plastics—that this is not the only industry—the plastics and chemical industry are not the—is not the only one that is using these tactics. These tactics are fairly widespread.

And I guess, on a micro level, one of the things that surprised me most, in Bittner’s testing, he looked at various types of commercially available plastics, and one of the types of plastic that was most frequently estrogenic was the corn-based plastic, so the plastic that is biodegradable, that you often find in restaurants—health food restaurants, health food stores, that this is potentially one of the most harmful types of plastic.

AMY GOODMAN: Explain that again.

MARIAH BLAKE: So, Bittner looked at various kinds of plastic, Bittner and his colleagues, when they tested plastics. There’s a variety of different kinds of plastic—polyurethane, PET-P, polycarbonate—all these different kinds of plastic. So he broke it down by types of plastic. He tested a number of samples of each one. And he—in the final paper, they showed which ones—what percentage of each type of plastic tested positive in their tests. And there is a type of plastic that is—frequently you’ll find it in Whole Foods, you’ll find it in health food stores. It is corn-based, and it is marketed as biodegradable. Oftentimes there are forks made out of this, for example, in health food restaurants. I believe the statistic was 95 percent of samples made out of this kind of plastic tested positive for estrogenic activity.

AMY GOODMAN: So what are you going to do with your three-year-old? What have you decided to use?

MARIAH BLAKE: Well, what I’ve already done is removed all plastic from my home. So, I have switched to natural materials. We use glass or stainless steel for our Tupperware, for our sippy cups, for everything that we possibly can. Plastic is unavoidable, so we still buy food packaged in plastic, because there is no alternative. But we try to minimize it.

AMY GOODMAN: Saran Wrap?

MARIAH BLAKE: Saran Wrap, actually, in Bittner’s tests, I believe it was somewhere around 99 to 100 percent of plastic wraps tested positive for estrogenic activity.

AMY GOODMAN: And where does the EPA come down when you question them about when they’re going to be regulating some of this, in the way that they regulated BPA?

MARIAH BLAKE: Well, the EPA still does not regulate BPA. The FDA—the FDA banned BPA in sippy cups and bottles at the request of the industry. So—and they still—the agency still insists that BPA is safe. So the industry asked the FDA to ban it, because they wanted to reassure parents that their products are safe. There has been no meaningful regulation of any of these chemicals, with the exception of phthalates. And in the case of the EPA, they have a program which was supposed to screen these 80,000 chemicals for what’s called endocrine disruption. So, endocrine-disrupting chemicals are chemicals that mimic hormones, like BPA. And they—this was supposed to be at least partially done by 2000. They still haven’t fully vetted a single chemical. So the industry has managed to throw stumbling blocks in their path. And delay is the name of the game, essentially, sowing doubt and delay. So—

AMY GOODMAN: And how much does the plastic in water bottles and juices leach into the water and the juices?

MARIAH BLAKE: PET or PETE, which is most commonly used for water bottles, is—I believe 75 percent of samples in Bittner’s study leached estrogenic activity. There is another study performed by a scientist in Germany which also found that this particular type of product was estrogenic. So, it seems, based on the available evidence, that many or most of these bottles leach estrogen.

AMY GOODMAN: And the longer the bottle of water you buy sits, is the water becoming increasingly contaminated?

MARIAH BLAKE: Well, there are certain factors that increase the risk of these chemicals being released. So, exposure to UV rays, heat, if they’re put in a dishwasher, these are the things that are known to increase—increase the risks that these chemicals leach out of plastics. So, with reusable plastics, in particular, this is a concern. If you boil them, if you put them in your dishwasher, if you leave them in your car, that causes plastics to break down, and it’s more likely that estrogenic chemicals will leak into whatever those containers contain.

AMY GOODMAN: Well, Mariah Blake, we want to thank you for your research, staff reporter with Mother Jones magazine. Her story is just out in the new issue; it’s called “The Scary New Evidence on BPA-Free Plastics: And the Big Tobacco-Style Campaign to Bury It.” We’ll link to it at democracynow.org. You can also follow her on Twitter. Later today, she’ll be doing a Twitter chat with readers.

http://www.motherjones.com/environment/2014/03/tritan-certichem-eastman-bpa-free-plastic-safe

The Scary New Evidence on BPA-Free Plastics

And the Big Tobacco-style campaign to bury it.

—By Mariah Blake | March/April 2014 Issue – MotherJones


Chasing Molecules by Elizabeth Grossman

An excerpt from the chapter, “The Polycarbonate Problem.”

BPA, Benzene, Phenols, & Carbonyl Chloride (also known as Phosgene)

Although it’s only in the past few years that news of bisphenol A’s health impacts began to reach a nonscientific general public–news that has since spread rapidly–it was first recognized as a synthetic estrogen in the 1930s. Papers published in the journal of Nature in 1933 and 1936 describe its estrogenic effects on lab rats. These papers also commented on the possible carcinogenic activity of materials with similar or comparable composition to bisphenol A–specifically materials synthesized from petroleum (from which bisphenol A is ultimately derived) and coal tar.

Some two decades later, bisphenol A was launched into everyday life with the development of commercially produced polycarbonates. Major production of these plastics began in the United States in the late 1950s after a General Electric engineer named Daniel W. Fox formulated a material based on BPA that GE called Lexan. The invention was not so much deliberately planned as it was the result of what Fox called his ability to take “a few clues and jump to conclusions that frequently panned out.”

While experimenting with different materials that might ultimately make a good moldable polymer, Fox decided to work with bisphenols, compounds derived from petroleum processing that were then being used to make various epoxy resins. As molecules, bisphenols have a structural feature that makes them useful as potential chemical building blocks. Attached to their hydrocarbon ring is what’s called a hydroxyl group, an oxygen and hydrogen that together form a site to which other molecules can bond. This structure is common to both synthetic and naturally occurring compounds, a coincidence that will later turn out to be important to how bisphenol A behaves.

Fox’s interest in the hydroxyl group was as a polymer building site, not for its biological activity. But when attached to a hydrocarbon ring as it is in bisphenol A, the entire chemical grouping becomes a molecule known as a phenol–an aromatic hydrocarbon, a ring made up of six carbon atoms and five hydrogen atoms plus a hydroxyl group. Phenols are commonly made by oxidizing benzene, which essentially means adding oxygen to benzene. Phenols are toxic, but they are also known for their antiseptic properties and so were used to kill germs in the nineteenth century surgical procedures.

This molecular group consisting of six carbon-five hydrogen rings with a hydroxyl group attached, however, is also part of the structure of substances produced naturally by the human body, compounds that include estrogen and thyroid hormones. Introducing a manufactured chemical that includes the phenol group into a cellular environment may therefore pose a problem because the synthetic material may compete biochemically with the similarly structured naturally occurring chemical. Thinking in green chemistry terms, the presence of a phenol group on a synthetic, therefore, should be a sign to investigate that substance’s potential as an endocrine disruptor.

The potential cellular toxicity of phenols has actually been known for decades. Research done in the 1950s, written about by Rachel Carson in Silent Spring, discussed the mechanisms by which pesticides constructed with phenols had the ability to prompt oxidation processes that upset cellular metabolism. These reactive chemical groups can disrupt formation of enzymes vital to energy production, which in turn may interfere with how an organism produces and differentiates cellular material. These processes of cellular reproduction are involved in virtually every bodily system, from how an individual processes sugars and calcium to how its reproductive system functions. Carson described the introduction of xeniobiotic phenols as thrusting “a crowbar into the spokes of a wheel. Had Fox been a green chemist, our current synthetic landscape might look very different.

But because Fox and his colleagues were focused on functional performance and on working with readily available chemical ingredients, bisphenols seemed a good choice. As an additional building block that might combine with the bisphenol molecules’ hydrocarbons to yield a useful polymer, Fox chose a chlorine compound called carbonyl chloride. Carbonyl chloride was then–and is currently–a common ingredient in the synthetics known as isocyanates that are used to make any number of products, including polyurethanes that go into varnishes, paints, and plastic foams. By the 1950s it was known that chlorinated hydrocarbons made useful synthetics so this was a logical route for Fox to follow–but no one had yet made the kind of moldable, shatter-resistant plastic that Lexan turned out to be.

If you’re building a polymer, a linked chemical chain in effect, you need lots of the same repeating pieces; ideally you’ll work with shapes that are easy to find and lend themselves to chemical bonding. It’s here that a Tinkertoy or Lego analogy comes to mind. To add pieces to a chemical structure, you need sites where new sticks and building blocks can be attached. So it was with the choice of bisphenols and carbonyl chloride, which lend themselves to such bonding and were both readily available industrial chemicals. Had Fox been practicing green chemistry, however, he would never–even with what was known in the 1950s–have launched a product that required copious quantities of carbonyl chloride.

Carbonyl chloride is also known as phosgene and is so toxic that it was used as a chemical weapon during World War I. The isocyanates it’s used to make are also highly toxic. One such compound, methyl isocyanate, was the gas involved in the deadly 1984 disaster at the Union Carbide plant in Bhopal, India. Lest anyone wonder if nerve gas is lurking in your bike helmet or CD cases, however, let me quickly explain that no phosgene or even any chlorine ends up in the final bisphenol A polymer; the chlorine compound is simply a reagent, an ingredient that enables the desired chemical bonding to take place.

Yet speaking to an interviewer in 1983, Fox acknowledged that using large quantities of a chemical such as phosgene was indeed hazardous. But, Fox continued, it “was not a totally frightening undertaking because we had good advice. I would say that we have been tightening up our whole phosgene handling ever since, investing in an awful lot of money in trying to make the stuff doubly safe and then triply safe and quadruply safe.” Still, the interviewer pressed, “Has there ever been a problem?” To which Fox responded, “We have had one or two small discharges. To my knowledge, I don’t think GE advertised it, but I think we probably had a ‘casualty’ from phosgene.” Did this give anyone second thoughts about going into business? “I don’t think it did,” Fox replied.

At the time Fox was working, new material inventions like carbonates were just that–inventions that came first, with applications and markets found later. “When we invented polycarbonates in the early 1950s we had a polymer with an interesting set of properties and no readily apparent applications,” Fox said in 1983. But what was known about polycarbonates’ behavior early on that might have hinted at what’s since been discovered about their physical and biological behavior” Could this information have been used to prevent what are clearly problems of chemical contamination? Endocrine-disruption science is relatively new, but some of what was known early on about bisphenol A and polycarbonates would seem to indicate a material perhaps not ideally suited for use, say, with food, heat, and dishwashing detergents.

That polycarbonates built from bisphenol A were vulnerable to certain detergents, solvents, and alkali solutions (household ammonia would qualify) has been known since at least the 1970s. Ammonium hydroxide (essentially a solution of ammonia in water) was discussed as a possible way to break polycarbonates down to its chemical constituents–for materials recovery and reuse and as a way to remove unwanted polycarbonate from another surface. It was also known that various additives used to modify polycarbonate mixtures could leach from the finished plastics when they came into contact with certain liquids. Documents filed with the Federal Register in 1977 list chloroform, methylene chloride, and chlorobenzene among these additives. (The U.S. Department of Health and Human Services considers chloroform and methylene chloride suspected carcinogens, while chlorobenzene is known to cause liver, kidney, and nervous system damage and produce a precancerous condition in lab rats.) Correspondence between GE Plastics Division personnel in the 1970s and 1980s also voiced concern over the presence of chlorobenzene in water stored in polycarbonate bottles (but not bottles made by GE as it happened) and about how the stability of these polymers might affect their ability to be used with food.

A memo circulated within the Lexan division of GE in 1978 also noted that “through reaction with water,” polycarbonate resin can degrade. “The two largest applications of Lexan resin for which hydrolytic stability is critically important are baby bottles and water bottles,” ran the 1978 memo.

In each application the finished parts are subjected to conditions which will cause, after prolonged treatment, molecular weight reduction. However, in each application, actual product failure is usually observed before significant molecular weight reduction is detectable by the usual techniques…..Baby bottles are subjected to autoclaving at 250 degrees F in saturated steam and fail under these conditions by becoming opaque, and sometimes by shrinking and deforming. Milk and water bottles are washed in aqueous solutions of alkaline or caustic cleaning agents and fail by stress cracking. The relationship between practical failure modes and the fundamental physical and chemical processes involved is not fully understood.

That polycarbonates might degrade when heated, washed, or exposed to sunlight was also discussed in company memos in the late 1970s and early 1980s. Three decades later, the plastics industry assures consumers that such wear and tear of polycarbonate baby bottles poses no health concerns for infant users.

Pages 58 – 62

To read more about this extremely informative book and sale information click on the link below.

 

Chasing Molecules

Read Full Post »

The Original Common Core: Why Aren’t We Teaching Rachel Carson in Schools?

by Robert Shetterly

August 08, 2014

by Common Dreams

This is what you shall do: love the earth and the sun and the animals… — Walt Whitman

Rachel Carson wrote Silent Spring in 1962, but I suspect for most people reading it today the information would be fresh, enlightening, and alarming. I can say that with some confidence because though I had read the book many years ago, have been an activist on many environmental causes that build on Carson’s work, keep up to date on ecological issues, and painted her portrait, I was shocked when I read her book. Don’t take my word for it. Go to your library and get a copy, read it on some electronic device, buy it used, but read it!

The shock arises form a number of factors. By 1962 she knew an enormous amount about the workings of chemicals and pesticides at micro and macro levels; she could describe the potent mechanisms that made them into carcinogens; it was already clear to her—to science—that most pesticides were counter-productive: Insects adapted to them and became resistant very quickly. More and stronger pesticides were always needed, and the poisons persisted in the environment, useless to kill pests, but incredibly potent in destroying the health and fate of many other species—including humans. In fact, nature did a better job of handling insect predation than chemicals. Carson accepted that pesticides were occasionally necessary but only with extreme care.

However, at the core of my response to Silent Spring are a profound sense of an opportunity missed and a profound failure of education. Think for a moment about the term “common core” that is used to describe the basic goal of education today. What is the core that all living things share in common? It’s the reality of nature, this Earth, the laws of nature, our connections in the biological web to all living species, our common evolution and destiny, our sacred duty to pass on a healthy environment. Any system of education for all children must teach that common core—from nursery school on. If we fail to teach that reality, we have failed as educators. Period. Our common core is not math and reading and critical thinking. Those are important skills. I’m sure the CEOs of Monsanto, Dow, and Exxon are critical thinkers. Our common core is our integral relationship to nature. First teach reality, then the skills needed to live in harmony with it. Then find a unique passion for learning and living in every child. Then teach that all economies must adhere to nature’s laws—not the other way around.

I wish that after 1962, every school in this country had started teaching the science and values of Rachel Carson’s book. Rachel Carson would have agreed with Russell Libby, a great advocate of local and organic farming from Maine who said, “If contamination is the price of modern society, then modern society has failed us.” She put it this way: “Can anyone believe it is possible to lay down such a barrage of poisons on the surface of the earth without making it unfit for all life? They should not be called ‘insecticides’, but ‘biocides.’”

By the third grade every kid in this country should know what Rachel Carson meant by: “The ‘control of nature’ is a phrase conceived in arrogance, born of the Neanderthal age of biology and the convenience of man.” We should all know what she meant when she said, “…we should no longer accept the counsel of those who tell us that we must fill our world with poisonous chemicals; we should look around and see what other course is open to us.” And everyone should understand that cancer is an environmental disease. It’s epidemic because of the pollutants and poisons we have put in the environment. To continue to treat the symptoms —trying to find cures—rather than confronting the causes, serves the profits of the medical and drug and chemical industries. By the 5th grade, we should understand the function of the liver and what happens to it when overtaxed by chemical pollutants. We should know that the leading cause of death in children is cancer.

Why don’t we teach our kids these things? Aren’t they supposed to learn facts that will make their lives better and healthier? And the values to implement them? Is Rachel Carson’s work not taught because she is too political? Why are facts about the essentials of biology and ecology political? Should Rachel Carson be taught as evolution and climate change are taught in many schools — one of several possible ways to think about “facts?”

Listen up students, it just could be that God put elements in nature so we could recombine them into malathion and dieldrin. Praise God. He put mountains over coal so we could have fun blowing them up to get it. Hallelujah! He created all living species in 6 days. Awesome! And He promised, if we would burn enough fossil fuel, a nice warm blanket of carbon dioxide to tuck us under at night. Thank You, God.

What a gift Rachel Carson gave us! What a tour de force to have done all that research. She collected scientific data from all over the world and had the temerity to write it all down when the US was in thrall to the chemical companies. With great clarity that anyone can understand—unusual for a scientist—she explains the biological mechanism of chemically induced mutations. She explains how poisons kill, how toxins interrupt the reproductive process of many species and why cancers have different gestation periods. And her science is woven into an ecologically moral philosophy.

And after discussing the atomic structure of chlorinated hydrocarbons (DDT is one), she describes the death throes of robins and squirrels as their collateral damage. The deaths she witnessed happened in the 1950s, but her writing is so vivid, so present, that I found myself outraged and grieving for each one. What she did not know yet, but was implicitly predicting, was the mass extinction of species that is taking place now.

People often date the beginning of the modern environmental movement from the publication of Silent Spring. The reaction to the book is credited with the formation of the Environmental Protection Agency. And Earth Day. But those outcomes have done little to stem the flood of over 80,000 chemicals in our environment now, 98% of them untested for human and ecological health. Rachel Carson is our common core. Our survival. Our kids need to be growing up with a firm ethic that would stem this flood of chemicals no matter how much money is involved.

Rachel Carson said, “The question is whether any civilization can wage relentless war on life without destroying itself, and without losing the right to call itself civilized.”

Do we have the right to call ourselves civilized because of our wealth and power and ingenuity, or only when we act with the wisdom our children and grandchildren can emulate for generations, treating the environment and their bodies with the care they deserve?

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License

To access the original article click on the link below

http://www.commondreams.org/views/2014/08/08/original-common-core-why-arent-we-teaching-rachel-carson-schools

Read Full Post »

Read Full Post »

Read Full Post »

Read Full Post »

Older Posts »