Feeds:
Posts
Comments

Archive for the ‘Flame Retardants’ Category

The Dark Side of the Perfectly Manicured American Lawn: Is It Giving You Cancer?  By McKay Jenkins from the book Contamination 

On a beautiful April day, I decided to meet outside with my students at the University of Delaware, where I teach journalism. We sat on the central lawn between two buildings that just happened to bear the names of two gargantuan chemical companies: DuPont and Gore. In the middle of a conversation about agricultural pesticides, a groundskeeper, dressed from feet to neck in a white chemical suit, drove by us on a mower. He wasn’t cutting the grass, though; he was spraying it. And not from one nozzle, but from half a dozen. Up and back he went, describing parallel lines as neat as those in any Iowa farmer’s cornfield. Not a blade escaped the spray. This became a perfect teaching moment.

“Who’s going to ask him what he’s spraying?” I asked my students. One young woman marched over to the groundskeeper. He turned off his engine, they spoke, and she returned.

“He said he’s spraying 2,4-D,” she said. “He said we didn’t need to worry, because he sprayed where we’re sitting at five this morning.”

Which would mean about seven hours earlier. My students chuckled uneasily. He was wearing a full-body chem suit, and they were sitting on the grass in shorts and bare feet?

They’d never heard of 2,4-D, or 2,4-dichlorophenoxyacetic acid. But they had heard of Agent Orange, the notorious defoliant used in Vietnam, and 2,4-D, one of the most extensively used herbicides in the world, is a constituent of Agent Orange (it did not cause the bulk of the devastating effects associated with Agent Orange). It was developed during World War II, mostly as a weapon to destroy an enemy’s rice crops. Despite its history, 2,4-D has long been seen as safe for consumer use.

In the 1940s, botanist E. J. Kraus of the University of Chicago fed five and a half grams of pure 2,4-D to a cow every day for three months. The cow was fine, according to Kraus, as was her calf. Kraus said he himself had eaten half a gram of the stuff every day for three weeks and felt great. This was apparently good enough for the rest of the country; within five years, American companies were annually producing 14 million pounds of the stuff. By 1964, the number had jumped to 53 million pounds.

Today, annual sales of 2,4-D have surpassed $300 million worldwide, and it’s found in “weed and feed” products, like Scotts Green Sweep, Ortho Weed B Gon, Salvo, Weedone, and Spectracide. At first, its impact on humans seems mild—skin and eye irritation, nausea, vomiting, dizziness, stiffness in the arms and legs—and many lawn-care companies have dismissed health concerns. Plus, the businesses add that the amount of chemicals in sprays is very diluted.

With 80 million home lawns and over 16,000 golf courses, you get close to 50 million acres of cultivated turf in America.

But the effects are more worrisome when considered over time. Because 2,4-D is designed to mimic a plant’s natural growth hormone, it causes such rapid cell growth that the stems of treated plants tend to become grotesquely twisted and their roots swollen; the leaves turn yellow and die; and the plants starve to death (2,4-D does not have this effect on grass).

Unsurprisingly, 2,4-D also appears to affect human hormones. The National Institute of Health Sciences lists it as a suspected endocrine disrupter, and several studies point to its possible contribution to reproductive-health problems and genetic mutations. Although the EPA says there isn’t enough evidence to classify 2,4-D as a carcinogen, a growing body of research has begun to link it to a variety of cancers.

A 1986 National Cancer Institute (NCI) study found that farmers exposed to 2,4-D for 20 or more days a year had a sixfold higher risk of developing non-Hodgkin’s lymphoma. Another NCI study showed that dogs were twice as likely to contract lymphoma if their owners used 2,4-D on their lawns.

Like flame retardants, this compound also tends to accumulate inside people’s homes even days after the lawn has been sprayed. One study found 2,4-D in the indoor dust of 63 percent of sampled homes; another showed that levels of the chemical in indoor air and on indoor surfaces increased after lawn applications. After 2,4-D was sprayed, exposure levels for children were ten times higher than before the lawns were treated—an indication of how easily the chemical is tracked inside on the little feet of dogs, cats, and kids.

Thanks to pressure from campus activists, my university replaced 2,4-D with “softer” herbicides and began putting signs on lawns that had just been sprayed. Of course, 2,4-D is one of scores of pesticides in use. According to David Pimentel, professor emeritus of entomology at Cornell University, 110,000 people suffer adverse health effects from pesticides every year, and 10,000 cases of cancer in humans may be attributable to pesticide exposure.

 

The Greening of America

In 1900, 60 percent of Americans lived in rural areas. Today, 83 percent live in cities or suburbs. With that change has come an astonishing shift in the landscape. Over the past half century, Americans have become obsessed with grass. When you add up the country’s 80 million home lawns and over 16,000 golf courses, you get close to 50 million acres of cultivated turf in the United States, an expanse roughly the size of Nebraska. This space is growing by 600 square miles a year.

By 1999, more than two thirds of America’s home lawns had been treated with chemical fertilizers or pesticides—14 million by professional lawn-care companies. A year later, the U.S. General Accounting Office reported that Americans were spraying 67 million pounds of synthetic chemicals on their grass every year, and annual sales of lawn-care pesticides had grown to $700 million.

The landscaping trucks rolling through our suburban neighborhoods seem to represent something more than a communal desire for lush grass. Could it be relief from anxiety? (Why else call a company Lawn Doctor?) For one thing, hiring lawn-care specialists is a public declaration that you have the money not to take care of your yard yourself.

Diligent lawn maintenance and chemical use are also associated with approval and social status, Ohio State researchers reported in 2012: “The main factor influencing a homeowner’s decision to use lawn chemicals is whether neighbors or other people in the neighborhood use them. Homeowners crave acceptance from their neighbors and generally want their lawns to fit in with their surrounding community, so they adopt their neighbors’ practices.”

We also create manicured lawns to play the most chemically dependent of pastimes: golf. By 2004, there were just under 15,000 golf courses in the United States—a patchwork of chemically treated turf the size of Rhode Island and Delaware combined.

Even grass seed comes coated with chemicals. A close look at a bag of Scotts grass seed reveals it has been treated with Apron XL fungicide, whose active ingredient is Metalaxyl-M, or methyl N-(methoxyacetyl)-N-(2,6-xylyl)-D-alaninate. The bag requests that the product be stored away from foodstuffs, kept out of the reach of children, and not be applied near water, storm drains, or drainage ditches. (A Scotts spokesperson says that its products are designed to be safe when used as directed.)

As the use of chemicals has become widespread, lawn companies have found an unexpected source of profits. Herbicides like 2,4-D preserve grass but kill weeds like clover. Clover, however, pulls nitrogen out of the air and fixes it in the soil. Without clover, soil becomes nitrogen poor and fails to support plant life. So chemical companies now replace the depleted nitrogen, which homeowners used to get for free from clover, with synthetic nitrogen, for which they have to pay.

In America’s watersheds, nitrogen runoff is considered among the worst problems for water quality. Since synthetic fertilizers are water soluble, a good amount runs off your lawn after a rain, where it mixes with runoff from other homes and ends up feeding the plants in bodies of water. Doused with chemicals, algae grow and grow, creating “algae blooms” that—as they decay and die—suck most of the oxygen out of rivers, lakes, and bays and lead to massive “dead zones,” in which neither fish nor plants can live.

In 2007, the Chesapeake Bay Foundation published a report card on the bay’s health that showed just how much trouble chemicals can pose. The bay received an F for nitrogen pollution, a D-minus for phosphorous, an F for water quality, an F for dissolved oxygen, and a D for toxics. On a scale of 100 (with 100 being the best), the bay’s health was rated at 28.

In California, scientists are discovering that algae blooms off the coast not only remove oxygen; they also release a toxin, domoic acid. It enters the food chain when fish eat algae, then moves into the sea lions that consume the fish. If a sea lion is pregnant, her fetus can be contaminated, and years later, that mammal may develop epilepsy.

 

One Man’s Chemical Conversion

Paul Tukey knows about pesticides; the man who invented 2,4-D was a distant cousin. When Tukey was a kid in the late 1960s, his grandfather hired a biplane to spray his 300 acres of fields in Maine a couple of times a year. The fields were mostly planted with cattle feed, not with crops intended for human consumption. For Tukey, spraying day was a thrill.

“My grandfather would go out in the field, dressed in his wool underwear and thick heavy pants, and wave the biplane over his field,” Tukey recalled. “They’d drop this white powder, and he’d get back in the truck looking like Frosty the Snowman. Then we’d drive to the next field, and he’d do it again. My grandfather was getting doused 20 times a day, but he would never let me get out of the truck. I always wondered why I couldn’t go out and get dusted.”

Tukey’s grandfather died of a brain tumor at 60.

Tukey also followed his family’s agricultural tradition but charted his own course. For years, he operated one of southern Maine’s largest landscaping services and considered his job ideal. He worked outside in shorts and sandals. He never bothered with putting on protective gear.

In 1993, he started getting nosebleeds. His vision became blurry. But with business booming, Tukey was too busy to worry. One of his jobs was tending the grounds of a hospital where he hired university students for the work. One day, their professor, an eminent horticulturist named Rick Churchill, came by to say hello to his students. Tukey went out to greet him.

Churchill’s eyes were focused on the weeds, which Tukey’s crew had doused with herbicides and which were curling up and turning brown.

Churchill said, “I asked him how anyone in good conscience could be applying pesticides on the grounds of a hospital where there were patients being treated for cancers that could be linked to their exposure to pesticides. I asked whether he knew anything about the toxicity ratings of what he was applying and how dangerous many of these compounds were to an individual compromised by illness.”

The words cut deeply. “It was devastating,” Tukey told me. “In Maine, Rick Churchill is an icon.”

“You have broken bags of poison,” Tukey told the manager. “They all say, ‘Keep out of reach of children’!”

Tukey did some reading, and what he found was troubling. Pediatric cancers in Los Angeles had been linked to parental exposure to pesticides during pregnancy. In Denver, kids whose yards were treated with pesticides were found to be four times more likely to have soft-tissue cancers than kids whose yards were not. Elsewhere, links had been found between brain tumors in children and the use of weed killers, pest strips, and flea collars.

Tukey also learned that exposure to lawn chemicals was particularly alarming for people who spread them for a living. One study showed a threefold increase in lung cancer among lawn-care workers who used 2,4-D; another found a higher rate of birth defects among the children of chemical appliers. When he finally went to the doctor for his rashes and deteriorating eyesight, he learned that he had developed multiple chemical sensitivity. And his son—conceived in 1992, during the height of Tukey’s use of synthetic chemicals—was diagnosed with one of the worst cases of ADHD his physician had ever seen. (Several recent scientific reports suggest that toxic chemicals may play a role in ADHD.)

“All the evidence indicates that you don’t want pregnant women around these products, but I was walking into the house every single night with my legs coated with pesticides from the knees down,” he said. “Even when my son was a year or two old, … [he] would greet me at the door at night by grabbing me around the legs. He was getting pesticides on his hands and probably his face too.”

Tukey’s Breaking Point

In the midst of his research, Tukey was driving one day when he saw a sign: A store was having a big sale on Scotts Turf Builder. Tukey made a beeline. He was going to buy the store’s entire stock. Once inside, he walked to the lawn-care section. Tukey noticed a woman standing by the lawn chemicals. At her feet, a girl was making sand castles from a broken bag of pesticides. Suddenly, something in him burst—the DDT squirting over his grandfather’s fields, the chemicals that he’d sprayed outside the hospital, and now a child in a pile of pesticides.

Tukey told me, “I said, ‘Ma’am, you really shouldn’t let your child play with that. It’s not safe.’ I’m fundamentally shy, but this just came out of me.”

The store wouldn’t sell the stuff if it wasn’t safe, she told Tukey. She took her child and walked away. A manager came up and asked him if there was a problem. Tukey said there was.

“You have broken bags of poison on the floor,” Tukey said to the manager. “All those bags say, ‘Keep out of reach of children’!”

Those labels are there because of government formality, the manager said. The stuff isn’t dangerous. The store wouldn’t carry it if it was.

“That really was the stake in the heart of my chemical career,” Tukey said. “By then, I’d already made myself sick. I’d already been questioned by Rick Churchill. When I saw that girl making sand castles out of the pesticides, [there] was just a sudden gut-level reaction I couldn’t have anticipated. I was shaking when I left the store.”

Tukey issued a decree to his employees: His business was going organic. It was time to start weaning his company—and customers—off synthetic chemicals. Most clients were fine with his decision, just as long as it didn’t cost any more and as long as their lawns continued to look the same.

More than 170 municipalities in Canada have banned lawn pesticides, especially on public spaces like school yards and sports fields. Denmark, Norway, and Sweden have banned 2,4-D. In 2009, the European Parliament passed laws banning 22 pesticides that can cause cancer or disrupt human hormones or reproduction.

 

How to Bring Back Butterflies

Certainly, switching to a less toxic lawn company can reduce your family’s—and neighbors’—exposure to synthetic chemicals. It would also reduce the pollutants you contribute to the watershed. But there is another option, one that gets into the more inspiring realm of restoration. There is a way to think of your yard as more than a burden that needs to be mowed and weeded. There is a way to think of your yard as transformational, even magical. Doug Tallamy can show you how.

When Tallamy, former chair of the entomology department at the University of Delaware, walks around his yard, he sees things most of us would not. He can look at a black cherry tree and spot the larvae of 13 tiger swallowtail butterflies. He has planted scores of trees: sweet gums, tulips, white oaks, river birches, and sugar maples. But he’s really interested in bugs and birds—and boosting their numbers.

Suburban development has been devastating to avian populations. Most of the birds we see in our yards are probably house sparrows and starlings, invasive species from Europe. If you study the population numbers for native birds, you’ll find the wood thrush is down 48 percent; the bobwhite, 80 percent; bobolinks, 90 percent. An estimated 72 million birds are killed each year in America by direct exposure to pesticides, a number that does not include baby birds that perish because a parent died from pesticides or birds poisoned by eating contaminated insects or worms. The actual number of birds killed might be closer to 150 million.

In mid-Atlantic gardening circles, Tallamy is a bit of a prophet, his message freighted with both gloom and promise. It is the promise of ecological renewal that he most wants people to understand. His vision is based on three ideas: If you want more birds, you need more native insects; if you want more native insects, you need more native plants; and if you want more native plants, you need to get rid of—or shrink—your lawn.

Tallamy says that when we wake up in the morning to birdsong, it’s often being made by hungry migratory birds that may have just flown 300 miles. What is there to eat? Too frequently, ornamental trees that bear none of the insects the birds need—and chemically treated grass. Tallamy’s prescription: Put in native plants that will make your yard a haven for caterpillars, butterflies, and birds. In the mid-Atlantic region, this can mean swamp milkweed, butterfly weed, buttonbush, joe-pye weed, and a rudbeckia species like black-eyed Susans. At the University of Delaware, Tallamy and a team are restoring native species to the campus.

And me? I ripped up 20 percent of my lawn and planted two flower gardens, two sets of flowering shrubs, and seven vegetable beds. Now my daughter helps me pick eggplants, tomatillos, okra, and Swiss chard. My son can identify not only monarchs and tiger swallowtails but also which plants they like to eat. How? Because last year the butterflies were not here, and this year they are. We replaced the grass, which monarch caterpillars can’t eat, with native flora they can consume. It’s as simple as that. Milkweed and joe-pye weed were born to grow here. All you have to do is plant them and wait for the butterflies.

 

Wise Moves for a Lush Lawn

1. Get tested. “Spending money on fertilizer without a soil test is just guessing,” says Paul Tukey. Good soil is key to a great lawn, and a soil test can tell you what’s in the dirt and what’s missing. For a test, call your county extension office (a national network of agriculture experts).

2. Plant clover with your grass. Clover competes with weeds and fixes nitrogen in the soil. John Bochert, a lawn and garden specialist in York, Maine, recommends a seed mix of white clover, perennial rye (it germinates quickly), fescue, and bluegrass.

3. Mow high, and leave the clippings. Taller grass provides more leaf for photosynthesis, develops deeper roots, and resists weeds. The clippings act as fertilizer. “Lawns mowed at four inches are the most weed-free,” Tukey says. “If you did only one thing, adjusting your mower height would be it.”

4. Cut back on watering. Frequent watering leads to shallow roots, so “water once a week if at all,” says Tukey

5. Apply compost. “Weeds need light to grow,” Tukey says. “Spreading compost on a lawn in the spring prevents weed seeds from germinating.”

6. Listen to weeds … “Weeds are nothing if not messengers,” says Tukey. “Dandelions are telling you the ground needs more calcium. Plantains are telling you the ground is too compact and needs aerating.”

7. … and to insects. Beneficial nematodes, which are microscopic worms, eat some 200 species of insects, including grubs that become Japanese beetles; you can buy them from farm and garden stores. Mix them in water, and spray them on your lawn.

 

 

 

Read Full Post »

Effects of decabrominated diphenyl ether (PBDE 209) exposure at different developmental periods on synaptic plasticity in the dentate gyrus of adult rats In vivo.

Xing T1, Chen L, Tao Y, Wang M, Chen J, Ruan DY.
Author information

Abstract
Polybromininated diphenyl ethers (PBDEs) are widely used as flame-retardant additives. Previous studies have demonstrated that PBDEs exposure can lead to neurotoxicity. However, little is known about the effects of PBDE 209 on synaptic plasticity. This study investigated the effect of decabrominated diphenyl ether (PBDE 209), a major PBDEs product, on synaptic plasticity in the dentate gyrus of rats at different developmental periods. We examined the input/output functions, paired-pulse reactions, and the long-term potentiation of the field excitatory postsynaptic potential slope and the population spike amplitude in vivo. Rats were exposed to PBDE 209 during five different developmental periods: pregnancy, lactation via mother’s milk, lactation via intragastric administration, after weaning, and prenatal to life. We found that exposed to PBDE 209 during different developmental periods could impair the synaptic plasticity of adult rats in different degrees. The results also showed that PBDE 209 might cause more serious effects on the postsynaptic cell excitability in synaptic plasticity, and the lactation period was the most sensitive time of development towards PBDE 209.

http://www.ncbi.nlm.nih.gov/pubmed/19535737

Read Full Post »

New battlefront for petrochemical industry: benzene and childhood leukemia by Kristen Lombardi for The Center For Public Integrity

ATHENS, Georgia — It was December 29, 1998, six years after Jill McElheney and her family had moved next to a cluster of 12 petroleum storage tanks. Jill was escorting her son Jarrett, then 4, to the doctor again. He had spent the day slumped in a stroller, looking so pale and fatigued that a stranger stopped her to ask if he was all right.

It was an encounter Jill couldn’t shake. For the previous three months, she had noticed her once-energetic preschooler deteriorating. He complained of pain in his knee, which grew excruciating. It migrated to his shoulder and then his leg. His shins swelled, as did his temples. At night, Jarrett awoke drenched in sweat, screaming from spasms. Jill took him to a pediatrician and an infectious-disease specialist. A rheumatologist diagnosed him with anemia.

Now, as Jarrett lay listless, Jill found herself back at the pediatrician’s office. Tests confirmed a blood count so low that she was instructed to get him to an emergency room immediately. Within hours she was at a hospital in Atlanta, some 65 miles from her home in Athens, watching nurses rush in and out of Jarrett’s room. Doctors identified a common form of childhood leukemia. “I heard the words,” Jill recalled, “and I only knew the bald heads and the sadness.”

In the waiting room, family members heard more unsettling news: A neighbor’s child also had developed leukemia.

Days later, Jarrett’s doctor penned a letter to federal environmental regulators about the two cancer patients, highlighting their “close proximity” to Southeast Terminals, a group of 10,000-gallon tanks containing gasoline, diesel and fuel oil.

“Could you please investigate,” the doctor wrote, “whether high levels of chemicals could have contaminated the water, possibly contributing … to the development of leukemia?”

Only then did the McElheneys consider the possibility that living beside one of the nation’s 1,500 bulk-oil terminals — known sources of cancer-causing benzene — had triggered their son’s leukemia.

“It was one of those light-bulb moments for us,” said Jeff McElheney, Jarrett’s father. “You never get over it.”

New battlefront for industry

Jarrett McElheney does not represent the standard benzene plaintiff. He’s not among the hundreds of thousands of people who toil in American oil refineries or other workplaces contaminated with the chemical and run the risk of developing leukemia. In the rancorous world of toxic-tort litigation, he stands virtually alone. A lawsuit filed by his parents in 2011 against Southeast Terminals owners BP and TransMontaigne is among a relatively few alleging leukemia caused by environmental benzene exposure. Among these, the McElheney case is rarer still: Most have hinged on adult leukemia.

Yet the case may signal an emerging quandary for the petrochemical industry, according to tens of thousands of pages of previously secret documents that have come to light in lawsuits filed against benzene manufacturers and suppliers on behalf of those who suffered from leukemia and other blood diseases, including Jarrett McElheney.

Internal memorandums, emails, letters and meeting minutes obtained by the Center for Public Integrity over the past year suggest that BP and four other major petrochemical companies, coordinated by their trade association, the American Petroleum Institute, spent at least $36 million on research “designed to protect member company interests,” as one 2000 API summary put it. Many of the documents chronicle a systematic attempt by the petrochemical industry to influence the science linking benzene to cancer. Others attest to the industry’s longstanding interest in topics such as childhood leukemia.

“A number of publications in the last few years have attempted to link increased risks of childhood leukemia with proximity to both petroleum facilities and local traffic density,” another 2000 API memo warns. “Although these publications have had little impact to date, the emphasis on ‘Children’s Health’ may cause these concerns to resurface.”

“This is indeed a battlefront for the oil industry,” said Peter Infante, a former director of the office that reviews health standards at the Occupational Safety and Health Administration, who has studied benzene for 40 years and now testifies for plaintiffs in benzene litigation. He has worked on a handful of cases involving children sickened by leukemia.

“It’s in the industry’s economic interests to refuse to acknowledge the relationship between benzene and childhood leukemia,” Infante said.

In May, in a sign of the chemical’s continuing threat, the U.S. Environmental Protection Agency estimated that 5 million Americans — excluding workers — face heightened cancer risks from benzene and 68 other carcinogens spewed into the air by the nation’s 149 oil refineries. The EPA has proposed a rule that would require refinery operators to monitor for benzene, in particular, along their fence lines.

Aimed at curbing “fugitive” emissions from equipment leaks and similar releases, the proposal would set a fence line limit for benzene of 3 parts per billion — a fraction of the 10 ppb the agency recommends as the maximum chronic exposure level for the chemical.

Industry groups are pushing back. In written comments, the API’s Matthew Todd called the proposal “a major and significant Agency action [that] will dramatically increase the paperwork and recordkeeping burden on refineries. It includes several precedent-setting proposals, will cost our industry hundreds of millions of dollars per year, increase safety risk [and] may impact fuels production and cost …. Production outages will likely occur.”

The EPA also heard from the people the rule is designed to protect. “We live near a refinery, and as a result my son can’t breathe,” a woman from Fontana, California, wrote in Spanish. “My cousin had respiratory problems while living near a refinery for more than 10 years,” a woman from Houston wrote, also in Spanish. “Unfortunately, he died 2 years ago from bone cancer. We believe this was a result of the ambient air where he lived.”

In June, California officials lowered the long-term exposure level for benzene from 20 ppb to 1 ppb — among the lowest in the country — setting the stage for further emissions cuts at refineries and bulk-oil terminals in that state. Officials say such regulatory actions aim to protect children, who are more susceptible to benzene’s toxic effects than adults because their cells aren’t as developed. California is considering classifying benzene not just as a human carcinogen, but as a “toxic air contaminant which may disproportionately impact children.”

“The fact that benzene impacts the blood-forming organs when you’re a developing child is a big deal,” said Melanie Marty of the state’s Office of Environmental Health Hazard Assessment.

Hidden menace

ill McElheney agrees. A warm, garrulous mother of five who has schooled herself in the health effects of pollution, she has spent the past 16 years seeking the cause of her son’s leukemia. She has filed open-records requests and contacted state and federal agencies, piecing together a history of gasoline spills and diesel-fuel leaks at Southeast Terminals. She can cite endless details about lingering benzene contamination on terminal property — extensively catalogued in state enforcement files — located “a stone’s throw away” from the trailer park where her family lived for seven years.

Jeff, Jarrett and Jill McElheney stand in the former site of the Oakwood Mobile Home Park, where the family was living when Jarrett was diagnosed with a form of childhood leukemia. Phil Skinner for the Center for Public Integrity
Now vacant and overgrown with brush, the former site of the Oakwood Mobile Home Park lies across a residential street from Southeast Terminals, its tanks rising above a thicket of pines and oaks. All day, every day, trucks drive in and out of the facility’s gates, filling tankers with gasoline and other products.

What can’t be seen is the plume of benzene that has worked its way into the groundwater beneath the tanks. “It’s not like Cancer Alley, with smokestacks belching crap in your face,” Jill said. “It’s hidden — literally.”

When she and Jeff moved to Oakwood in 1992, they saw the 14-trailer community as something of an oasis — quiet, tight-knit. Nestled under shady trees, near churches and schools, it seemed like the perfect location. Even the park’s water supply, drawn from an unpermitted well dating back decades, appeared idyllic: Its pump house served as a beacon on park property, visible for all to see — including, court depositions later confirmed, terminal employees.

“We saw Oakwood as an opportunity,” recalled Jeff, a mustachioed, genial man who operates a roofing company and managed the park for his father, its previous owner.

Jarrett McElheney, center, with 3 of his 4 siblings. Courtesy of the McElheney family
Jarrett arrived two years later and, by his fourth birthday, had grown into an adventurous boy with an abiding love of water. His parents remember him splashing in the tub for hours. Often, he swam in an inflatable pool in their yard, dressed in what he called his “little blue [wet] suit.” He slurped on Kool Aid and popsicles made from well water whose purity his parents never questioned — until his 1998 diagnosis of acute lymphocytic leukemia, or ALL, a form of the blood cancer found overwhelmingly in children.

Within days of hearing the news, Jarrett’s parents tested their water. Samples from the Oakwood well revealed a brew of such chemicals as carbon tetrachloride and 1,2-dichloroethane, sparking a state investigation. The Georgia Environmental Protection Division (EPD) found benzene in the water of Oakwood’s well at levels up to 13 ppb — 26 times higher than the federal safety standard. In response, the agency shuttered the well and connected residents to public water.

Over the next year, state geologists worked to identify the contamination’s source. They dug monitoring wells and collected soil samples. Their initial investigation linked at least one pollutant in the park well — not benzene — to nearby abandoned grain silos. Geologists eventually eyed Southeast Terminals as a likely source of the benzene contamination, records show.

“The terminals are certainly suspects for the benzene detected in the [Oakwood] well,” one posited in a 2000 email. “The probable path is deep ground water.”

Another noted the presence of “a possible plume (with benzene) moving by Oakwood … and within a few hundred feet of the [park]’s former well, [thus] too close for comfort for a public-water supply well.”

Two years later, EPD investigators were still documenting high levels of benzene, ranging from 8,000 to 12,000 ppb, on terminal property — as well as the likelihood that, one 2002 EPD memorandum states, “the benzene contamination found in the trailer park well came from the Southeast Terminals.”

Ultimately, though, the state’s two-year, nearly $200,000 investigation yielded few answers. By 2008, groundwater monitoring results revealed only trace amounts of benzene at Oakwood. Today, EPD officials say they lack definitive proof tying the well’s benzene pollution to any source.

For Jill McElheney, the outcome of the inquiry was anything but satisfying. “It just seems to me that when you’ve got benzene in a well and a major source of it next door, you’d make the connection,” she said.

In fact, Jill already had been seeking answers elsewhere. In 2000, she turned to the federal Agency for Toxic Substances and Disease Registry, or ATSDR, petitioning it for a public health assessment. Instead, the agency launched a less-thorough public health consultation, meant to ascertain the risk to human health posed by the contaminated well water at Oakwood.

The results brought little clarity. In a 2001 report, the ATSDR determined that “the groundwater contaminant plume” initially sampled in the Oakwood well “is a public health hazard.” At the same time, it singled out a pollutant other than benzene as the threat. For benzene, the agency found that “the likelihood someone would get cancer as a result of their exposure is very low.”

In a 2000 draft filed with the state, however, the ATSDR concluded that the highest concentrations of benzene in the water were of concern. “This risk DOES exceed an acceptable risk level,” the draft states, “and may result in an elevated risk of cancer for exposed individuals.”

An ASTDR spokeswoman did not respond to requests for comment.

Mounting evidence on benzene and leukemia

The science linking benzene to cancer — particularly leukemia, in all its forms — has preoccupied the petrochemical industry for more than half a century. As far back as 1948, the API’s toxicological profile of the chemical discussed “reasonably well documented instances of the development of leukemia as a result of chronic benzene exposure,” cautioning that “the only absolutely safe concentration … is zero.”

Later, as scientific evidence of benzene’s hazards accumulated and regulatory limits on workplace and environmental levels tightened, the industry took a different stance. By 1990, the API and member companies such as BP, Chevron, Mobil and Shell had launched a research program meant to keep further restrictions at bay — or, minutes from an API meeting in 1992 state, research “that will be most useful in improving risk assessment and influencing regulation.”

Within months, the API task force overseeing the program was enumerating “developing issues.” Topping its list, according to minutes from a meeting in 1993, was this notation: “link to childhood leukemia?”

That possible link appeared on the industry’s radar again in 2000, documents show. At the time, API representatives were drumming up financial support for an unparalleled study of workers exposed to benzene in Shanghai, China, delivering what amounted to a sales pitch for the project. They touted what one 2000 API overview described as its “tremendous economic benefit to the petroleum industry” — helping to combat “onerous regulations” and “litigation costs due to perceptions about the risks of even very low exposures to benzene.” Childhood leukemia was mentioned explicitly.

Five years later, industry representatives grew concerned enough to bankroll their own research. Documents show the API task force approved funding for what minutes of one meeting in 2005 dubbed a “benzene regulatory response,” comprising a “childhood leukemia review” and “child-to-adult sensitivity to benzene” analysis, for a total of $30,000.

By then, the scientific evidence on benzene and leukemia in adults was well-established. Throughout the 1960s and early 1970s, studies of Italian shoe and leather workers indicated a relationship between the chemical and the cancer. Then, in 1977, the National Institute for Occupational Safety and Health, part of the Centers for Disease Control and Prevention, launched a seminal study of two Goodyear plants in Ohio that made Pliofilm, a thin rubber wrap. The research quantified for the first time the leukemia risk for workers exposed to benzene, prompting OSHA to work on a stricter standard that took effect in 1987.

In years since, the science has solidified. Recent research has shown lower and lower levels of the chemical — less than the OSHA limit of 1 part per million — can cause leukemia as well as other blood and bone marrow disorders.

By contrast, experts say, the research on benzene and childhood leukemia isn’t as conclusive. Multiple studies have indicated that children whose mothers were exposed to benzene-containing solvents during pregnancy experience elevated risks of developing the disease. Others have shown that children living near gas stations or highways — breathing in benzene in the air — face heightened risks. One 2008 study reported a significant spike in the rate of the disease in Houston neighborhoods with the highest benzene emissions.

Taken together, the nearly four dozen publications on the topic strongly suggest the carcinogen can cause leukemia as much in children as adults, experts say.

“Children aren’t another species,” said Infante, the former OSHA official who has reviewed the scientific literature for medical associations and governmental agencies. “If benzene causes leukemia in adults, why wouldn’t it cause leukemia in children?”

The scientist behind the API-commissioned analysis would likely disagree. In 2009, David Pyatt, a Colorado toxicologist with long-standing ties to the petrochemical industry, published a journal article about his review, in which he reported examining 236 studies on the relationship between benzene and childhood leukemia. Many of the studies suggesting a link “suffer from the same limitations,” he concluded, such as poorly quantified exposure estimates.

“At this point,” Pyatt wrote, “there is insufficient epidemiologic support for an association or causal connection between environmental benzene exposure … and the development of childhood [leukemia].”

Some say the review reflects a common industry tactic: Compile studies on a subject, and then shed doubt on each one by claiming the data aren’t good enough.

Pyatt did not respond to repeated emails and phone calls from the Center seeking comment; nor did the API.

In depositions, Pyatt acknowledged that he has never testified for a plaintiff in a benzene exposure case. He has worked as a consultant and defense expert for such petrochemical giants as BP, ConocoPhillips, ExxonMobil and Shell, he has said; the API has financed additional work of his on benzene, as has the American Chemistry Council, the chemical industry’s main lobby.

In a deposition taken last year, Pyatt said he wouldn’t discount benzene’s link to childhood leukemia — at least, not to acute myeloid leukemia, or AML, a type rarely found in children.

“There is no reason to think that [children] are going to be protected,” he testified. “So I would certainly think that a child can develop AML if they are exposed to enough benzene.”

In other depositions, Pyatt has conceded no link between benzene and ALL, the type that attacked Jarrett McElheney.

‘They have to stop this practice’

For the McElheneys, the extent of the benzene contamination from Southeast Terminals only came to light years after Jarrett’s chemotherapy regimen had beaten back his leukemia. Yet state and federal enforcement records pinpoint on-site releases of the chemical in 1991, a year before the family moved to the area. At the time, managers of the terminal — jointly owned and operated by BP and Unocal Corp. — discovered a leak of diesel fuel seeping through soil where an underground pipeline was buried.

Terminal employees removed 40 cubic yards of “petroleum contaminated soils,” according to a report filed by BP with the state, and recorded benzene on site at levels as high as 81 ppb. Groundwater samples showed even higher concentrations: 12,000 ppb.

State regulators found such pollution “exceeds our ‘trigger’ levels,” a 1991 letter to the company states, and requested further action.

Under Georgia law, the company was required to develop what the EPD calls a “corrective action plan,” which, among other things, would have delineated the terminal’s benzene plume, as well as identified nearby public water wells.

In a 1991 reply, BP promised the EPD it would file its plan in four months.

Nine years later — after the McElheneys had tested their well water and the EPD had issued a 2000 citation against BP for failing to submit a “timely” corrective action plan — the company finally carried out that requirement, records show.

BP, in charge of the terminal’s daily operations, declined to comment for this article. At different times, Unocal, Louis Dreyfus Energy and TransMontaigne have been BP’s partners at the site. TransMontaigne, its current partner, did not respond to repeated emails and phone calls. TransMontaigne purchased Louis Dreyfus Energy in 1998. Chevron, which merged with Unocal in 2005, declined to comment.

Today, state regulators attribute their own delay in cracking down on the diesel leak to an internal debate over which EPD division had authority over the terminal’s benzene contamination — its underground storage tank program, which has purview over the pipeline; or, its hazardous waste branch. For years, compliance officers in that branch, along with their counterparts at the EPA, had been monitoring the facility’s practice of dumping benzene-laced wastewater on site — a practice later confirmed by terminal employees in court depositions.

In 1990, the EPA issued new rules classifying benzene as hazardous waste and requiring bulk-oil terminals to have permits for discharging the “bottoms water” in petroleum tanks. This wastewater can become tainted by the chemical when mixed with gasoline. Rather than treat the water, Southeast Terminals funneled it through an “oil/water separator” to skim off fuel, and then dumped it into a ditch on the ground.

Company records at the time show that terminal supervisors admitted they drained the wastewater “direct into streams” or “a dike area which eventually drains offsite into a stream.”

“I remember thinking, ‘They have to stop this practice,’” said John Williams, an EPD environmental specialist who inspected the terminal in 1993 and documented the dumping.

Three months later, the EPD issued a notice of violation against Southeast Terminals, forcing supervisors to test the bottoms water. Regulators found benzene at levels four times greater than the legal limit of 0.5 ppb, prompting the EPA to take action.

“We saw an issue there,” said Darryl Hines, of the EPA’s regional office in Atlanta, explaining why officials initiated a 1997 civil enforcement action against the facility.

In its complaint, the EPA accused BP and then-partner Louis Dreyfus Energy of violating federal hazardous-waste law — disposing waste without a permit, and failing to categorize it as hazardous. The agency ordered the companies to shut down the oil/water separator, and implement a plan addressing “any groundwater contamination.”

By the time Jarrett developed leukemia a year later, the EPA had negotiated a settlement with the companies and laid out a series of requirements for cleaning up the benzene. Without admitting fault, BP and Louis Dreyfus agreed to spend at least $100,000 to remove leaking underground pipelines and install above-ground infrastructure. They also paid a penalty of $15,000.

When BP finally filed its long-delayed action plan, it revealed the presence of what EPD project officer Calvin Jones described as a “dissolved hydrocarbon” plume containing benzene — “a bigger problem than we had thought.” The chemical, concentrated at 500 ppb and counting, had spread beyond the immediate spill areas. Of greater concern to regulators, the plan identified “free product” in groundwater.

“There was actually gasoline floating on the water,” explained Jones, of the EPD’s underground storage tank program, who oversaw the facility’s protracted cleanup. Referring to gasoline’s ability to dissolve in water, he said, “You can’t get higher concentrations of benzene … than free product.”

Despite a decade-long cleanup — 35.2 million gallons of contaminated groundwater and 1,009 pounds of benzene were collected — the chemical still saturates much of the nearly 19-acre Southeast Terminals site, records show. Last year, the EPD issued a letter declaring “no further action required,” which released the companies from remediation. At the time, the state-sanctioned benzene count remained at 1,440 ppb.

Over the years, enforcement records show, company consultants and regulators alike have tried to trace the path of the wastewater at the terminal. One company analysis details a trail beginning at the property line and then spilling into adjacent woods before hitting a tributary. Another document, produced by the EPA, depicts the discharge as moving offsite through woods and into a resident’s backyard.

“It’s where the drainage flows,” said Jeffrey Pallas, deputy director of the agency’s hazardous waste division in Atlanta, who oversaw the case against BP and Louis Dreyfus, explaining that the document, complete with photographs, was only intended to verify the hazardous-waste law violations.

“We cannot substantiate from the documentation we have that the benzene left the site,” he said.

Seeking accountability

The McElheneys have seen the evidence they need to connect Southeast Terminals to the benzene in the Oakwood well — and Jarrett’s suffering. They believe all the state and federal enforcement actions have yielded few consequences for the facility’s owners. If Jarrett hadn’t gotten sick, they say, they might never have known about the benzene hazard. “The companies would have paid off their small fines,” Jill said, “and nobody would have been the wiser.”

Seeking some accountability, the family filed a lawsuit three years ago against BP, TransMontaigne and seven other previous owners, alleging that the “illegal discharge and release of toxic chemicals” at Southeast Terminals contaminated the surrounding environment and caused Jarrett to develop leukemia.

In court filings, the companies denied the allegations and dismissed any link between benzene and childhood leukemia. Last year, defense lawyers invoked a familiar tactic: They cited the Pyatt review to support their claims that the chemical couldn’t have caused Jarrett’s illness. The family recently has agreed on a settlement in principle and is working toward resolving the litigation.

“I thought, ‘This is par for the course,’” said Jill, who has read some of the industry documents uncovered by the lawsuit. “The oil industry has fought regulations and lawsuits for workers and adults. Now they’re going to do it with children.”

Jarrett is now a slight, reserved 20-year-old in remission. He remembers his bout with leukemia through a child’s eyes — the “really cool” ambulance rides, the nurses with coloring books, swinging golf clubs in hospital hallways. “I remember being stuck over and over again by needles” while getting a bone-marrow aspiration or a chest catheter or countless blood draws, he said. “But it wasn’t until much later I realized what happened to me didn’t happen to other kids.”

Today, he has had to grapple with cancer’s lasting effects — the feebleness, and the fatigue — as well as its lingering fears. As a leukemia survivor, he is at risk for developing osteoporosis, cataracts, or even another cancer. Sitting in an Olive Garden in Athens, sandwiched between his parents, Jarrett came across as exceedingly shy, uncomfortable in the limelight. Often, his parents did the speaking for him.

Moments earlier, Jill had explained how leukemia had changed her son, taken an emotional toll.

“He had a really loud voice as a toddler but that voice has mellowed,” she said. “I’ll take that voice over anything.”

Maryam Jameel contributed to this story.

Click on the link below to access the original article at the Center for Public Integrity

http://www.publicintegrity.org/2014/12/08/16356/new-battlefront-petrochemical-industry-benzene-and-childhood-leukemia

Read Full Post »

A dozen dirty documents
Twelve documents that stand out from the Center’s new oil and chemical industry archive

By Kristen Lombardi for The Center for Public Integrity

The Center for Public Integrity, along with researchers from Columbia University and the City University of New York, on Thursday posted some 20,000 pages of internal oil and chemical industry documents on the carcinogen benzene.

This archive, which will grow substantially in 2015 and beyond, offers users a chance to see what corporate officials were saying behind the scenes about poisons in the workplace and the environment.

Here are 12 examples of what the petrochemical industry knew about benzene; the impetus behind industry-sponsored science; and the corporate spin that often occurs when damning evidence against a chemical threatens companies’ bottom lines.

What the industry knew:

The industry knew the dangers of benzene exposure at both high and low concentrations, as illustrated by this 1943 report for Shell Development Company by a University of California researcher.

“Inasmuch as the body develops no tolerance to benzene, and as there is a wide variation in individual susceptibility, it is generally considered that the only absolutely safe concentration for benzene is zero.” That was a conclusion reached in a 1948 toxicological review of benzene prepared for the American Petroleum Institute, a trade association.

Benzene’s dangers known in 1943 (pg 2)
This 1943 report, prepared for Shell, is among the earliest to suggest that any prolonged exposure to benzene may be harmful.

No safe exposure level (pg 4) This 1948 review, prepared for the oil industry’s main trade group, the American Petroleum Institute, continues to torment the industry in litigation alleging benzene can cause various types of leukemia and other diseases of the blood-forming organs. In essence, it says the chemical is so potent that there is no safe exposure level.

A 1950 consultant’s memo to Shell lists benzene as having “established carcinogenic qualities.”

Benzene recognized as a well-known carcinogen (pg 1)

This 1950 memorandum from a consultant for Shell Development Company notes that benzol — an obsolete name for benzene — is a well-known carcinogen. As the author states, the memo was prompted by “an increased concern about the incidence of cancer” among Shell workers.

Motivations for industry involvement in research:

In 1995, a benzene study by the National Cancer Institute caught the attention of Exxon scientists, who closely monitored it.

Industry interest in cancer research (pg 1)
An Exxon scientist, B.F. Friedlander, explains that he and industry colleagues are “monitoring” a series of studies by the National Cancer Institute because of their focus on “health risks at low benzene exposures.” The memo shows the petrochemical industry’s early interest in the work of the NCI, which has examined the effects on Chinese workers exposed to benzene at levels below the legal occupational limit in the United States.

While attempting to gain support for a proposed study of benzene toxicity in Shanghai, China, the American Petroleum Institute cites “a tremendous economic benefit” to companies, which could gain data to combat “onerous regulations.” A project overview explains that publications linking benzene to childhood leukemia may cause concerns about the chemical to “resurface.”

‘Tremendous economic benefit’ from the industry study (pg 1)
The six-page overview touts the proposed Shanghai research as a way for the petrochemical industry to gain an “accurate understanding” of benzene’s health effects, which, in turn, would bring “tremendous economic benefit.”

A 2000 summary of the API’s research strategy, drafted by the group’s Benzene Task Force, explains that the research program “is designed to protect member company interests.” The anticipated results could “significantly ameliorate further regulatory initiatives” to curb benzene emissions.

Protecting industry interests (pg 2)

The summary describes the intent of the API’s research program as being “designed to protect member company interests.”

An email exchange explains how “HSE [health, safety and environment] issues surrounding benzene as well as the litigation claims” against the industry compel companies to participate in the industry-sponsored study.

Motivations for research (pg 2)
An email from one Shell executive argues that the “litigation claims we continue to see” are prime reasons for the company to spend millions of dollars on the proposed Shanghai research.

A PowerPoint presentation from 2001 lists “significant issues of concern” to encourage financial support for the API’s research on benzene-exposed workers in China. Among them is “litigation alleging induction of various forms of leukemias and other hematopoietic diseases.” The study, according to the presentation, could provide “strong scientific support for the lack of a risk of leukemia or other hematological diseases at current ambient benzene concentrations to the general population.”

Significant issues of concern (pg 3)
This PowerPoint slide suggests “significant issues of concern” that the proposed Shanghai research might help combat, which would save the petrochemical industry “millions of dollars in expenses.” The issues include more stringent regulations and litigation from benzene exposure.

“Litigation support” and “risk communication” are listed as goals in this 2007 memorandum describing an API risk management program. Further objectives are to establish current regulations as “protective” and avoid additional action.

Oil lobby’s risk management program (pg 1)
The memorandum details the oil lobby’s benzene “risk management” program, intended to “develop scientific data” for it and its member companies to use for “science advocacy” and “litigation support.”

Corporate spin

An undated litigation defense guide written by a senior Shell attorney acknowledges the 1948 report on leukemia and offers a “comprehensive strategy” on how to respond to litigation, including releasing benzene-related documents only on court order.

Acknowledgement of the science showing no safe levels of benzene (pg 4)

Here the author, Richard O. Faulk of Shell Oil’s legal department, references a 1948 Toxicological Review prepared for the American Petroleum Institute. The review found that “the only absolutely safe concentration for benzene is zero.”

After a draft of an API recruitment brief reminds potential study sponsors of “personal injury claims,” an email exchange among members of the Benzene Health Research Consortium urges deletion of “the reference to legal liabilities.”

Don’t mention the legal liabilities (pg 3)

This email from a Shell executive responds to an attached draft of a 2002 recruitment brief that reminds prospective donors about benzene liability costs. In the email, the executive urges colleagues to delete “the reference to legal liabilities” and emphasizes that “the only reason we are doing this is in support of protecting workers.”

A 2001 email from the consortium’s communications committee explains that the perception of the study “needs to be that this is not being done to protect against litigation”

Controlling the message on benzene (pg 1)

The email shows the companies behind the Benzene Health Research Consortium working hard to control their message. It lays out the “scope of public affairs” for the consortium’s communications committee, which includes countering any “perception” that the Shanghai study was “done to protect against litigation.”

Click on the link below to access original article and archival documents.

http://www.publicintegrity.org/2014/12/05/16361/dozen-dirty-documents

Read Full Post »

Internal documents reveal industry ‘pattern of behavior’ on toxic chemicals by David Heath for The Center for Public Integrity

Sixty-six years ago, a professor at the Harvard School of Public Health wrote a report linking leukemia to benzene, a common solvent and an ingredient in gasoline. “It is generally considered,” he wrote, “that the only absolutely safe concentration for benzene is zero.”

The report is remarkable not only because of its age and candor, but also because it was prepared for and published by the oil industry’s main lobby group, the American Petroleum Institute.

This document and others like it bedevil oil and chemical industry executives and their lawyers, who to this day maintain that benzene causes only rare types of cancer and only at high doses.

Decades after its release, a lawyer for Shell Oil Company flagged the 1948 report as being potentially damaging in lawsuits and gave out instructions to “avoid unnecessary disclosure of sensitive documents or information” and “disclose sensitive benzene documents only on court order.”

Plaintiff’s lawyers like Herschel Hobson, of Beaumont, Texas, wield such documents in worker exposure cases to demonstrate early industry knowledge of benzene’s carcinogenic properties.

“It shows a pattern of behavior,” Hobson said. “It shows how industry didn’t want to share bad news with their employees. None of this information was made available to the average worker … Most of this stuff kind of gets lost in the weeds.”

No more. Today, the Center for Public Integrity; Columbia University’s Mailman School of Public Health and its Center for the History and Ethics of Public Health; and The Graduate Center at the City University of New York are making public some 20,000 pages of benzene documents — the inaugural collection in Exposed, a searchable online archive of previously secret oil and chemical industry memoranda, emails, letters, PowerPoints and meeting minutes that will grow over time.

The aim is to make such materials — most of which were produced during discovery in toxic tort litigation and have been locked away in file cabinets and hard drives — accessible to workers, journalists, academic researchers and others.

Some are decades old, composed on manual typewriters; others are contemporary. Combined with journalism from the Center — such as today’s story on a $36 million benzene research program undertaken by the petrochemical industry — and articles and papers from Columbia and CUNY faculty and students, the archives will shed light on toxic substances that continue to threaten public health.

Exposed: Decades of denial on poisons

The benzene documents are just the start. In coming months, we’ll be posting hundreds of thousands of pages of discovery material from lawsuits involving lead, asbestos, silica, hexavalent chromium and PCBs, among other dangerous substances. And we’ll be on the lookout for other documents.

The inspiration for the project came when we realized that in CPI’s reporting on environmental and workplace issues, we routinely obtained reams of court documents. Often, these documents hold secrets found nowhere else.

Last year we reached out to William Baggett Jr., a lawyer in Lake Charles, Louisiana, who had acquired more than 400,000 pages of documents from a decade-long case against manufacturers of vinyl chloride, a cancer-causing chemical used in plastics. Baggett agreed to give us all of them.

At the same time, public health historians Merlin Chowkwanyun, David Rosner and Gerald Markowitz were collecting court documents to create a public database and had approached Baggett. We decided to collaborate. Chowkwanyun is currently a Robert Wood Johnson Foundation Health & Society Scholar at the University of Wisconsin-Madison, and will be an assistant professor of sociomedical sciences at Columbia next year. Rosner is Ronald Lauterstein Professor of Sociomedical Sciences and History at Columbia. Markowitz is a professor of history at the City University of New York. Both Rosner and Markowitz have served as expert witnesses in a number of major cases related to these documents and have written Deceit and Denial: The Deadly Politics of Industrial Pollution and other books and articles based on them.

This is not the first database of its ilk. The University of California, San Francisco, maintains a massive collection of documents from tobacco-related lawsuits called the Legacy Tobacco Documents Library, which exceeds 80 million pages.

How to search the documents

Our database allows you to search for a word, combination of words or an exact phrase in any of the documents. You can also:

Do a search that excludes a word by putting a ‘-‘ sign in front of the word.
Do a fuzzy search that includes variations of a word by putting a tilde ‘~’ at the end of a word with the numbers of characters that don’t have to match exactly. For example, ‘planit~2’ will match ‘planet.’
Do a search that optionally contains a word by putting a ‘|’ between the words.
Do a search with a phrase by putting double quotes around the phrase.
Each document will include the court case from which it came, including the case title, case number, court as well as date filed and date terminated. The original complaint for each lawsuit is also part of the database.

Soon, we will make available a robust set of text-mining tools that will allow researchers to construct chronologies of documents; generate lists of common words, phrases and names; and sort documents in a number of ways. Qualified researchers will also have access to an even larger set of documents that will eventually contain millions of pages.

Robert Proctor, a professor of the history of science at Stanford, has used the UCSF tobacco archive extensively to do research for several books. He called it “an unparalleled treasure” that gives researchers the ability “to look through the keyhole of the mansion of this hidden world and see [corporate officials’] private thoughts, their intent, their ruminations, their jokes, their plans, how they treat their workers, how they treat the public…”

Proctor said he sees value in a similar archive on toxic chemicals. “The internal records of the chemical industry are known only to a tiny group of lawyers and journalists,” he said. “This is going to create a new kind of democracy of knowledge. It also will set the stage for whistleblowers to come forward with documents.”

That’s our hope. The search interface includes options to send us documents or contact us. The ultimate goal, to borrow Proctor’s phrasing, will be to give users “a strong magnet to pull rhetorical needles out of archival haystacks.”

Click on the link below to access the original article at The Center for Public Integrity

http://www.publicintegrity.org/2014/12/04/16330/internal-documents-reveal-industry-pattern-behavior-toxic-chemicals

Read Full Post »

Burning irony: Flame retardants might create deadlier fires by By Brett Israel
http://www.environmentalhealthnews.org/ehs/news/2012/burning-irony
Senior Editor and Staff Writer Environmental Health News
April 4, 2012

In one of the deadliest nightclub fires in American history, 100 people died at a rock concert in Rhode Island nearly a decade ago. But the biggest killer wasn’t the flames; it was lethal gases released from burning sound-insulation foam and other plastics.

In a fatal bit of irony, attempts to snuff fires like this catastrophic one could be making some fires even more deadly.
New research suggests that chemicals – brominated and chlorinated flame retardants – that are added to upholstered furniture and other household items to stop the spread of flames increase emissions of two poisonous gases.
“We found that flame retardants have the undesirable effect of increasing the amounts of carbon monoxide and hydrogen cyanide released during combustion,” study co-author Anna Stec, a fire specialist at the University of Central Lancashire in the United Kingdom, said in a statement.

These two gases are by far the biggest killer in fires. They are responsible for 60 to 80 percent of fire deaths, according to the National Fire Protection Assn. During the Rhode Island fire, the levels of hydrogen cyanide and carbon monoxide were high enough to kill in less than 90 seconds. (There is no evidence, however that flame retardants were involved; the nightclub’s foam insulation reportedly was not treated with them.) [Editor’s note: clarification added 4/5/2012]

Flame retardants made of brominated or chlorinated chemicals are added to furniture cushions, carpet padding, children’s car seats, plastics that encase electronics and other consumer items. Under California standards adopted in the 1970s, foam inside furniture must withstand a 12-second exposure to a small, open flame, and much of the nation’s furniture is manufactured with flame retardants to meet that standard.

However, while the chemicals may be slowing the spread of flames, when fires do occur, they may be more deadly. Few details of the new research from the United Kingdom are available since the findings have not yet been published. But the researchers said in one experiment, nylon containing the flame retardant brominated polystyrene released six times more hydrogen cyanide when set afire than the same material containing a halogen-free flame retardant.

Hydrogen cyanide is 35 times more deadly than carbon monoxide, and during a fire it can kill in as little as one minute, said Todd Shoebridge, a 30-year fire service veteran who is a captain at the Hickory Fire Department in North Carolina. “It’s that serious,” Shoebridge said.

Both carbon monoxide and hydrogen cyanide are products of incomplete combustion. As a room on fire loses oxygen, combustion becomes less efficient and gases and smoke rapidly increase. Inhaling the toxic air becomes unavoidable for people trapped in a fire.

Brominated and chlorinated flame retardants work by interfering with combustion, which can increase the amount of the gases.

The evidence “leads one to assume that these chemicals could increase fire safety concerns, not decrease them,” said Heather Stapleton, an environmental chemist at Duke University who specializes in studying brominated compounds.
The new research focused on brominated polystyrene, a newer flame retardant manufactured by Albemarle Corp. and other companies. It is added to nylon for use in textiles, upholstery and electrical connectors.

These newer compounds were designed to replace older flame retardants, mostly polybrominated diphenyl ethers or PBDEs, which have been banned since 2004 because they were building up in human bodies, including breast milk. PBDEs are still found in furniture manufactured before the bans.

PBDEs and other halogenated flame retardants were already known to produce other toxic chemicals when they burn, including highly toxic dioxins and furans.

Another replacement for PBDEs is called Tris or TDCPP, (1,3-dichloroisopropyl) phosphate. Foam containing this chemical was shown to release high amounts of carbon monoxide and smoke during ignition, according to a 2000 study.

With or without fires, research suggests, flame retardants may have risks. PBDEs and other halogenated flame retardants have come under intense scrutiny in recent years. PBDEs have been linked in some studies of people and animals to impaired neurological development, reduced fertility, early onset of puberty and altered thyroid hormones. Tris also may be toxic to the developing nervous system.

Albemarle Corp., based in Baton Rouge, La., and maker of Saytex 3010G, a brominated polystyrene flame retardant similar to mixtures tested in the new research, did not return requests for comment. Chemtura Corp., another flame retardant manufacturer based in Philadelphia, Penn., also did not return requests.

The companies have maintained that flame retardants play a critical role by allowing longer escape and response times during a fire, thereby saving lives and property.

“It is estimated that escape times can be up to 15 times longer when flame retardants are present, providing increased survival chances,” according to a statement from the European Brominated Flame Retardant Industry Panel, which includes Albemarle and Chemtura.
[Editor’s note: Additional information from industry was available and added on 4/5/2012]

Bryan Goodman, a spokesman for the American Chemistry Council, which represents chemical companies, called the claim that flame retardants may increase fire deaths “irresponsible, as it ignores important research.”

“Scientists have long pointed out that when flame retardants are included in upholstered furniture it slows or stops fires, thereby causing less burn, fewer flames, less smoke and fewer toxic gases,” he said. “This fact has been proven in large scale tests of upholstered furniture.”

Goodman said the new research “used a small-scale test, which is not representative of what one would find in a real fire.”

But a document signed by more than 200 scientists from 30 countries disputes that flame retardants have been proven effective. “Brominated and chlorinated flame retardants can increase fire toxicity, but their overall benefit in improving fire safety has not been proven,” the 2010 statement says.

The health threats from halogenated flame retardants combined with their persistence in the environment have driven a search for more environmentally friendly alternatives.

“Reducing the use of toxic or untested flame retardant chemicals in consumer products can protect human and animal health and the global environment without compromising fire safety,” says a 2010 report by a group of 10 scientists, including Linda Birnbaum, director of the National Institute of Environmental Health Sciences.

In the new research from the United Kingdom, some alternatives were found to create less toxic air than the halogenated flame retardants. Inorganic, or mineral-based, flame retardants had little effect on toxic gases released in a fire.
Each year, about 10,000 people die in fires in industrialized countries. On average in the United States in 2010, someone died in a fire every 169 minutes, according to the National Fire Protection Assn.

Previous research has focused on carbon monoxide and soot from halogenated flame retardants. But lately, hydrogen cyanide and other gases are getting a closer look, said Richard Hull, a chemist at the University of Central Lancashire who presented the new flame retardant research at an American Chemical Society conference in San Diego last week.

“Carbon monoxide is an important toxicant in fire effluents. However, we have seen that it is less important than hydrogen chloride from burning PVC, or hydrogen cyanide from burning nitrogen-containing polymers such as nylon, polyurethane or acrylic, in developed fires,” Hull said.

New research has suggested that hydrogen cyanide – so lethal it was used in the Nazi gas chambers – is a bigger cause of fire deaths than previously thought.

In one example, a fire devastated a prison in Buenos Aires, Argentina, in 1990. Thirty-five inmates died as a mattress fire spread through the prison. But flames did not kill the convicts, a post-mortem blood analysis revealed. Hydrogen cyanide did.

“The results indicated that death in the 35 fire victims was probably caused by HCN [hydrogen cyanide], generated during the extensive polyurethane decomposition provoked by a rapid increase of temperature,” according to the analysis of the victims in the Argentina fire.

Hydrogen cyanide and carbon monoxide are odorless, colorless chemicals, making them silent killers.
“If there is a fire, it doesn’t matter how big or how small,” said Shoebridge, who is lead advocate of North Carolina’s “Everybody Goes Home” firefighter safety program. “You have the possibility for those gases.”

http://www.environmentalhealthnews.org/ehs/news/2012/burning-irony

Read Full Post »

Some Flame Retardants Make Fires More Deadly – ScienceDaily (Mar. 27, 2012)
http://www.sciencedaily.com/releases/2012/03/120327134240.htm

Some of the flame retardants added to carpets, furniture upholstery, plastics, crib mattresses, car and airline seats and other products to suppress the visible flames in fires are actually increasing the danger of invisible toxic gases that are the No. 1 cause of death in fires. That was the finding of a new study presented in San Diego on March 27 at the 243rd National Meeting & Exposition of the American Chemical Society (ACS), the world’s largest scientific society. Anna A. Stec, Ph.D., led the research, which focused on the most widely-used category of flame retardants, which contain the chemical element bromine. Scientists term these “halogen-based” flame retardants because bromine is in a group of elements called halogens.

Some of the flame retardants added to carpets, furniture upholstery, plastics, crib mattresses, car and airline seats and other products to suppress the visible flames in fires are actually increasing the danger of invisible toxic gases that are the No. 1 cause of death in fires. That was the finding of a new study presented in San Diego on March 27 at the 243rd National Meeting & Exposition of the American Chemical Society (ACS), the world’s largest scientific society. Anna A. Stec, Ph.D., led the research, which focused on the most widely-used category of flame retardants, which contain the chemical element bromine. Scientists term these “halogen-based” flame retardants because bromine is in a group of elements called halogens.

Read Full Post »

Older Posts »